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Abstract

Sensory signals from the outside world are transduced at the periphery, passing through thalamus before reaching cortex, ultimately giving
rise to the sensory representations that enable us to perceive the world. The thalamocortical circuit is particularly sensitive to the temporal
precision of thalamic spiking due to highly convergent synaptic connectivity. Thalamic neurons can exhibit burst and tonic modes of firing
that strongly influence timing within the thalamus. The impact of these changes in thalamic state on sensory encoding in the cortex, how-
ever, remains unclear. Here, we investigated the role of thalamic state on timing in the thalamocortical circuit of the vibrissa pathway in the
anesthetized rat. We optogenetically hyperpolarized thalamus while recording single unit activity in both thalamus and cortex. Tonic spike-
triggered analysis revealed temporally precise thalamic spiking that was locked to weak white-noise sensory stimuli, whereas thalamic burst
spiking was associated with a loss in stimulus-locked temporal precision. These thalamic state-dependent changes propagated to cortex
such that the cortical timing precision was diminished during the hyperpolarized (burst biased) thalamic state. Although still sensory driven,
the cortical neurons became significantly less precisely locked to the weak white-noise stimulus. The results here suggests a state-depend-
ent differential regulation of spike timing precision in the thalamus that could gate what signals are ultimately propagated to cortex.

NEW & NOTEWORTHY The majority of sensory signals are transmitted through the thalamus. There is growing evidence of com-
plex thalamic gating through coordinated firing modes that have a strong impact on cortical sensory representations.
Optogenetic hyperpolarization of thalamus pushed it into burst firing that disrupted precise time-locked sensory signaling, with a
direct impact on the downstream cortical encoding, setting the stage for a timing-based thalamic gate of sensory signaling.

burst; coding; optogenetic; thalamocortical; vibrissa

INTRODUCTION

Sensory thalamus plays a critical role in gating informa-
tion flow from sensors in the periphery to cortex, ultimately
shaping how we perceive the world. Importantly, thalamic
gating properties are not static but instead vary dynamically
through a range of modulatory mechanisms, including local
membrane and synaptic properties (1), stimulus history (2),
and neuromodulatory inputs (3, 4). Although arising from
different mechanisms, these modulatory inputs have the net
effect of altering the baseline membrane polarization level in
the thalamus, referred to here as “thalamic state,” which
plays an important role in determining the encoding proper-
ties of the thalamic neurons that serve as primary inputs to
sensory cortex. Perhaps most prominently, modulation of
the baseline membrane potential in thalamic neurons

enables distinct tonic and burst firing modes due to the
selective engagement of low threshold calcium channels
during prolonged hyperpolarization (5). It has long been pos-
ited that these two firing modes could dynamically control
information processing (6), but the precise way in which this
could happen has remained speculative and the way in
which cortical coding properties are shaped is unknown.

Although the large majority of studies of T-type calcium
channel bursts in thalamus have been focused on the under-
lying detailed biophysical mechanisms enabled by brain
slice recordings, there have been a number of investigations
of the intact circuitry in vivo. At the thalamocortical syn-
apse, in vivo studies have shown that spontaneous burst
spikes are more effective at driving cortical spiking (7) and
evoke larger cortical depolarizations (8) than tonic spikes.
The in vivo properties of burst and tonic spiking have been
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explored perhaps most extensively in the visual pathway (9–
13), with burst firing shown to be reliably elicited across trials
in response to visual stimulation (11, 13, 14), associated with
an “all-or-none” type of response to facilitate detection of
changes in the visual scene (11, 15) consistent with mecha-
nisms that would serve as a “wake-up call” to cortex (6) for
salient stimuli (16). Furthermore, although historically con-
troversial, it has been shown in a number of studies that tha-
lamic bursting is not just observed in sleep states or under
anesthesia but is present, albeit reduced, in the awake brain
(2, 17, 18). However, the implication for downstream cortical
encoding remains elusive because of the complexity of the
thalamocortical circuitry. It has been estimated that 50–100
thalamic neurons converge as the primary drivers of a single
cortical neuron (8), where the concerted effort of a relatively
large number of synaptic inputs is needed to drive supra-
threshold cortical activity. Without a mechanism to manipu-
late the population activity of thalamic neurons converging
on a common cortical target independent of the sensory
drive, the role of tonic/burst firing in driving downstream
cortical activity remains elusive.

In this study, we used a combination of extracellular elec-
trophysiological recordings in the ventral posteromedial
(VPm) thalamus and primary somatosensory cortex (S1) and
inhibitory optogenetic manipulation of thalamic state in the
vibrissa pathway of the anesthetized rat to determine the
role of thalamic state on sensory signaling in the pathway.
Specifically, a spike-triggered analysis was implemented in
response to a weak, sensory white-noise whisker stimulus
that captures both the sensory feature selectivity and overall
sensitivity of the neural activity to sensory drive (19–21). We
found that tonic thalamic spiking was precisely time locked
to the sensory stimulus, exhibiting sensitivity to rapid transi-
ents in the sensory input over 10–15 ms, consistent with pre-
vious studies (20). However, we found that burst spiking in
VPm, while strongly driven by sensory input, exhibited tim-
ing variability that disrupted spike-triggered feature selectiv-
ity for both bursting in the baseline condition, and
optogenetically induced burst mode. In S1, when the thala-
mus was dominated by tonic firing (i.e., without thalamic
hyperpolarization), cortical neurons exhibited similar fea-
ture selectivity as observed in VPm. However, when the
thalamus was optogenetically hyperpolarized, the cortical
spike-triggered analysis revealed a reduction in precise stim-
ulus-locked spiking in S1 units in response to the white-noise
whisker stimulus, yet maintained a consistent overall stimu-
lus-driven firing rate. Given the sensitivity of the cortex to
precise timing of thalamic projection neurons, these results
suggest that shifts in thalamic state disrupt precise timing of
thalamic inputs to cortex that weaken the potency of the tha-
lamic bursts for weak sensory inputs, setting the stage for a
timing-based gating of information flow to cortex that deter-
mines what signals do and do not get transmitted.

METHODS

Experimental Procedures

Acute surgery.
All procedures were approved by the Georgia Institute of
Technology Institutional Animal Care and Use Committee

and were in agreement with guidelines established by the
National Institutes of Health. Nineteen female albino rats
(Sprague–Dawley, 250–300g) were anesthetized intrave-
nously using a fentanyl cocktail [fentanyl (5mg/kg), midazo-
lam (2mg/kg), dexmedetomidine (150mg/kg)]. A craniotomy
was performed over VPm (2–4mm caudal to bregma, 1.5–
3.5mm lateral to the midline), and in a subset of animals, a
second craniotomy was performed over S1 (1–3mm caudal to
bregma, 4.5–6mm lateral to the midline). At the termination
of the experiment, the animal was euthanized with an over-
dose of sodium pentobarbital (euthasol, 0.5mL at 390mg/
mL). All optogenetically transfected animals that underwent
cortical probe recordings were perfused, and their brains
were imaged for verification of opsin location and cortical
probe location.

Electrophysiology.
Tungsten microelectrodes were lowered into the thalamus
(depth: 4.5–6mm) using a micropositioner (Kopf, Luigs-
Neumann). Multielectrode probes (A1x32-10mm-50-177,
NeuroNexus) were lowered perpendicular to S1 (45� rela-
tive to vertical; depth: 2mm). The topographic location of
the electrode was identified through manual stimulation
of the whisker pad. If the unit demonstrated responsive-
ness to multiple whiskers, it was not recorded and the elec-
trode continued to be advanced until a new whisker
sensitive unit was isolated. Upon manual identification of
the single primary whisker for the recorded unit(s), the pri-
mary whisker was threaded into the galvo motor to permit
stimulation of a single whisker. For thalamic recordings, a
punctate adapting whisker stimulus (9 punctate stimuli at 6�

amplitude or 2,230�/s at 100-ms interval) was applied to mea-
sure the first spike latency shift. If the first spike latency shift
for the last punctate stimulus was greater than 20 ms relative
to the first punctate whisker stimulus, the unit was classified
as being within the nearby posteromedial (POm) complex of
the thalamus (22) and was therefore not recorded.

Sensory stimulus.
Mechanical whisker stimulation was delivered using a pre-
cisely controlled galvo motor (Cambridge Technologies, cus-
tom Matlab software). The mechanical stimulus applied to
the whisker in the rostral-caudal direction consisted of sen-
sory white noise (low pass filtered at 200Hz, standard devia-
tion of the noise was 0.6� or 223�/s). Feedback from the
whisker stimulator for unfrozen white-noise segments were
used for further spike-triggered analysis across all units in
VPm and S1 (down sampled to 4.88kHz). In all cortical
recordings, in addition to the unfrozen white-noise seg-
ments, 4-s segments of frozen white noise were presented
100–150 times per recording. Frozen white-noise segments
were used to compute across trial reliability, here measured
as trial-to-trial jitter (23).

Viral transfection procedure.
All surgical procedures followed sterile protocol. A small cra-
niotomy wasmade above VPm (3mm lateral, 3mm caudal to
bregma). A 10-mL syringe (Neuros Syringe, Hamilton, Inc)
filled with the virus (rAAV5-CamKIIa-Jaws-KGC-GFP-ER2 or
rAAV5-CamKIIa-eNpHR3.0-EYFP, UNC Viral Vector Core
Services) was lowered to depth of 5.2mm before injecting
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1mL of virus at a rate of 0.2mL/min (iSi system, Stoelting).
The syringe remained in place for 5 min after the injection
was complete to allow the virus to diffuse. Opsin expression
was fully realized at 2–3wk postsurgery. The CamKIIa pro-
moter was used to target an inhibitory opsin (24) into excita-
tory neurons (25) in the thalamus. Although this promoter
would prohibit the expression of the opsin in the neighbor-
ing thalamic reticular nucleus, it would not preclude expres-
sion in nearby whisker sensitive thalamic nuclei such as the
posterior medial nucleus (POm). However, the optical fiber
was physically coupled to the electrode which was located in
the VPm. Given the dorsal positioning of POm relative to
VPm, the direction of optical activation downward into the
tissue would further restrict optogenetic effects to the VPm
relative to POm.

Optogenetic stimulus.
Opticalmanipulationwas administeredwith a controlled pulse
of light through a custom optrode consisting of an optical fiber
(200mm diameter; Thorlabs) and an electrode (Tungsten
microelectrode; Frederick Haer & Co., Bowdoinham, ME) that
was lowered into the VPm. Upon identifying a whisker sensi-
tive cell, light sensitivity was assessed by the postinhibitory
rebound spiking response using a train of 250 ms light pulses
(k = 590 or 617nm for Halorhodopsin and Jaws, respectively).
The whisker was then stimulated without (baseline) and with
(hyperpolarized) light provided directly to the thalamus [maxi-
mum intensity of 1.6 mW as measured with a power meter;
estimated 50 mW/mm2 at the fiber tip given a 200-mm-diame-
ter fiber (cross-sectional area of 0.0314 mm2)]. Studies that
have directly quantified the effects of optical stimulation on
local tissue heating and neural activation (in the absence of
opsin expression) have found no significant difference in the
firing rate change for 1-mW light intensity (26) or minor firing
rate changes for 3-mW light intensity but no behavioral effects
(27). Optogenetic stimulus conditions (light on/hyperpolarized,
light off/baseline) were interleaved to avoid long-term adapta-
tion effects.

Analytical Methods

Spike sorting.
Spike sorting for single-channel recordings was performed
online and validated offline using Waveclus (28). Spike sort-
ing for multichannel electrodes was performed offline using
the KlustaKwik software suite (29). Isolation of the unit was
confirmed by the waveform amplitude (specifically that the
ratio of the peak-to-peak voltage of the mean waveform di-
vided by the standard deviation of the waveform was greater
than 3) and the absence of spikes in the absolute refractory
period as revealed by the interspike-interval distributions
(VPm: mean of 0.22%, S1: mean of 0.38% of spikes in abso-
lute refractory period of 1ms). Cortical units were further
classified as putative fast spiking if the peak-to-trough dura-
tion was less than 0.4ms, and regular spiking otherwise (30).
For the data analyzed here, 25 of 32 cortical units were classi-
fied as fast spiking units.

Burst spike classification.
Burst spikes were classified here from the extracellular
recordings as two or more spikes with an interspike interval

of less than 4 ms with the first spike in the burst preceded by
100ms of silence (12).

Spike-triggered analysis.
Spike-triggered analysis for exploration of feature selectivity
has been utilized widely in the thalamocortical circuit of the
visual (11, 31–33), auditory (34, 35), and somatosensory path-
ways (19–21, 36). Here, we implemented spike-triggered anal-
ysis for each unit recorded in VPm thalamus and S1 cortical
layer 4. Specifically, feature selectivity was first estimated
for each recorded unit using a simple spike-triggered average
(STA) (37).

STA ¼ 1
N

X

j

sðtjÞ ð1Þ

where N is the number of spikes and s is the stimulus seg-
ment in a window surrounding each spike (�30 to þ 5ms).
Note that the collection of stimulus sequences preceding
each spike in a data set is referred to here as the “spike-trig-
gered ensemble,”where the spike-triggered average is the av-
erage of this ensemble. To evaluate the potential differences
between signaling properties for tonic and burst firing, the
spike-triggered averages were computed in two different
ways. First, the burst- and tonic-triggered averages were
computed from burst and tonic spikes, respectively, where
spikes were classified as “tonic” or “burst” based on the
above classification rules. In this case, the tonic-triggered av-
erage was computed exclusively from tonic spikes, and the
burst-triggered average was computed exclusively from
burst spikes. Second, in contrast, the baseline/hyperpolar-
ized condition triggered averages were computed from all
spikes in a given optogenetically manipulated condition.
Although the baseline condition containedmore tonic spikes
and the thalamic hyperpolarized condition contained more
burst spikes, the conditions are not exclusively burst or tonic
spikes. Thus, these triggered averages were more reflective
of the gross signaling properties of the condition of the thala-
mus (baseline versus hyperpolarized). The bootstrap esti-
mate of the confidence intervals on the spike-triggered
average was computed as the ±2 standard deviation of the
shuffled STA distribution across 500 repetitions (37). Note
that we implemented multiple techniques of estimating the
feature selectivity of the neurons including spike-triggered
covariance (STC), generalized linear models, and nonlinear-
input models (19, 38). The results were qualitatively consist-
ent across all methods employed, so we implemented spike-
triggered average analysis throughout the study due to its
simplicity. STC analysis of both VPm and S1 neurons did not
reveal significantly different structure for the neurons
recorded under our experimental conditions as compared
with STA, and are thus not shown here. More importantly,
STC analysis did not reveal a shift in feature selectivity
across thalamic states, consistent with the STA analysis pre-
sented here.

Signal-to-noise ratio of the spike-triggered average.
The signal-to-noise ratio of the recovered STA (SNRSTA) was
quantified as the peak-to-peak amplitude of the STA (STAPP)
within 10ms of the spike (where the significant filter activity
is contained) divided by the peak-to-peak amplitude of the
STA from 30 to 20 ms before the spike (STAnoise; where there
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is no expected filter information). An SNR value of 1 means
the amplitude of the STA near the spike time is not different
from the amplitude of the noise fluctuations. Therefore, any
units with an SNR value less than 2.5 were excluded from
further analysis.

Principal component analysis.
There was significant diversity in the resultant STA structure
across recorded neurons and across animals. Utilizing the
approach of Estebanez et al. (19) to make comparisons of the
feature selectivity across the population of recorded neu-
rons, we conducted a principal components analysis of the
recovered STA across all recorded neurons. The analysis
computes the eigenvalues (percent variance explained) and
eigenvectors (principal components). Importantly, the anal-
ysis seeks to identify the principal components that account
for a majority of the variability in the input. If the input data
can be represented by only a few principal components, this
suggests that most of the information in the data set can be
represented in a lower dimensional space. Here, we found
that the first two principal components computed from the
recovered STA across all recorded neurons accounted for the
majority of the variance (71.8% VPm, 78.4% S1), and therefore
were interpreted as representative of the primary structure in
the sensory input relevant for spiking in the population.

Spiking nonlinearity.
A linear-nonlinear model proposes that the incoming sen-
sory stimulus (s) is linearly filtered with the feature selectiv-
ity of the particular neuron (here defined as the STA) to
generate the filtered stimulus. Mathematically, the filtered
stimulus (y) is the convolution of the stimulus (s) and the fea-
ture selectivity of the unit (tSTA) (39). In this linear-nonlin-
ear model, the linearly filtered stimulus (y) is then passed
through a point nonlinearity [P spikejy� �

] which produces an
estimate of the firing rate given the sensory stimulus. This
point nonlinearity simply maps the filtered stimulus occur-
rence to the probability of the neuron firing. The nonlinear-
ity [P spikejy� �

] was estimated as the ratio of the probability
of spike-triggered stimuli [P yjspike� �

] to the probability of
any stimulus segment in the stimulus [P yð Þ] multiplied by
themean firing rate of the neuron [PðspikeÞ] (37):

p spikejyð Þ ¼ p spikeð Þ p yjspikeð Þ
p yð Þ ð2Þ

Because the slope of the static nonlinearity is determined
by the separation between the spike-triggered ensemble and
the Gaussian distributed white noise, as the spike-triggered
ensemble distribution becomes more selective (i.e., the
mean moves away from the filtered stimulus distribution),
the separability of the distributions increases, and the slope
of the nonlinearity also increases. Intuitively, this means
that the shape of the nonlinearity gives an estimate of the
separability of the spike-triggered ensemble and the stimu-
lus distribution, or how strongly tuned a neuron is for that
particular feature, given by the STA. A steeper slope in the
nonlinearity suggests a stronger tuning than a shallower
slope. As with the STA analysis, to evaluate the potential dif-
ferences between the nonlinearity for tonic and burst firing,
we analyzed the nonlinearity in two different ways. First, we
assessed the nonlinearity for the tonic and burst spikes,

where the nonlinearity estimates were generated exclusively
from tonic or burst spikes. Second, we assessed the nonli-
nearity from all spikes in a given optogenetically manipu-
lated condition. Again, although the baseline condition
contained more tonic spikes and the thalamic hyperpolar-
ized condition contained more burst spikes, the conditions
are not exclusively burst or tonic spikes. Thus, these nonli-
nearities were more reflective of the gross properties of the
condition of the thalamus (baseline vs. hyperpolarized). For
all analyses, the best estimate of the STA was defined as
tonic spike-triggered average for thalamic units and the
baseline thalamic state (i.e., not optogenetically manipu-
lated) for the cortical units. Throughout the manuscript, we
separate the firing rate [p(spike)] from the shape of the nonli-
nearity [p(yjspike)/p(y)] to avoid confounding differences in
firing rate with differences in tuning.

STA jitter.
When providing a punctate whisker stimulus, computing a
metric such as first spike latency and jitter in the first spike
latency is straightforward given the precise onset of the stim-
ulus. However, estimation of the jitter in response to a weak
sensory white-noise stimulus is more complicated due to dif-
ferent timing variability for different sensory features and
differing feature selectivity across neurons (40). There is no
clear onset of the sensory stimulus (as it is ongoing) and
there is no repeatability in unfrozen white-noise segments
(where the unfrozen white-noise data collection was necessi-
tated by the STA analysis). Therefore, to estimate the tempo-
ral jitter in the thalamic firing in response to unfrozen white-
noise segments, we developed a metric (sjitter) to estimate the
time of each recorded spike relative to when we would pre-
dict a spike based on the spike-triggered average. sjitter is
defined for each spike as the temporal lag (tlag) for the peak
correlation between the STA and the stimulus segment sur-
rounding that spike (�30ms to þ 5ms):

sjitter ¼ argmax
tlag

correlation STA; s tjð Þ� �

For a recording, this analysis thus results in a distribution
of sjitter values across the recorded spikes. The sjitter distribu-
tion was normalized by the total number of spikes in each
condition to create a probability distribution (tonic/burst
spikes, baseline/hyperpolarized optogenetic conditions). It is
important to note that although this is an indirect measure
of timing variability that carries with it the assumption of an
underlying feature selectivity, for the cortical recordings
where we had collected significantly more responses to fro-
zen white noise, we validated this approach using more tra-
ditional means of timing variability analysis, finding similar
metrics of timing precision/jitter (see below).

Precision.
The precision in the sensory white-noise-evoked firing was
estimated for tonic and burst spiking, as well as for the base-
line and hyperpolarized conditions, based on the sjitter distri-
bution described above. The precision was defined as the
number of spikes with sjitter values of ±1-ms duration normal-
ized by the total number of spikes, or the area under the sjitter
distributions between ±1ms (denoted by gray shaded bars in
Fig. 4C).
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Trial-to-trial jitter.
In the cortical units, frozen white-noise segments were
recorded. Frozen white-noise segments enable the direct
assessment of across trial variability in the evoked neural ac-
tivity. Here, we followed the methodology of Montemurro et
al. (23) to compute a trial-to-trial variability metric. First, a
peristimulus time histogram was computed with 1-ms reso-
lution. The maximum firing rate was identified for each neu-
ron and a threshold was set at 0.5 times the maximum firing
rate. All peaks in the peristimulus time histogram (PSTH) that
exceeded this threshold were extracted and aligned to create
an event-triggered average which was parameterized using a
Gaussian function. The standard deviation of the Gaussian fit
was defined as the trial-to-trial jitter. Neurons with fewer than
200 spikes in the event aligned PSTH were excluded from the
analysis due to poor Gaussian fit (2 of 32 neurons).

Statistical comparisons.
All pairwise statistical comparisons were computed using a
Wilcoxon signed-rank test unless otherwise noted.

RESULTS

Spike-Triggered Analysis in the Thalamus and Cortex

We recorded thalamic and cortical extracellular spiking
activity in response to sensory white-noise stimulation of a
single whisker in the vibrissa pathway of the fentanyl-cock-
tail anesthetized rat to enable long-duration, controlled
measurements needed for precise estimates of feature selec-
tivity (Fig. 1A, see METHODS). We estimated the feature selec-
tivity for each unit as the spike-triggered average (STA),
which captures the features of the sensory stimulus that
tended to precede spiking (see METHODS). Spike-triggered
analysis has been widely utilized in studying feature selec-
tivity in the visual (11, 31–33), auditory (34, 35), and soma-
tosensory (19–21, 36, 41–43) pathways. Although this
quantification relied on longer unique noise segments and
thus much of the data collection was focused on this, in a
small subset of neurons we also recorded the response to
short (4–10s) frozen white-noise segments to examine the
response across trials. Figure 1B shows an example recording
from a simultaneously recorded pair of neurons in topograph-
ically aligned regions of the thalamus (left column, ventral
posteromedial nucleus, VPm) and cortex (right column, pri-
mary somatosensory cortex, S1) in response to the repeated
presentation of a single frozen white-noise segment (top of
each column). Across trials, the repeatability of the response
to the noise stimulus is apparent in the VPm raster plot, with
clear vertical patterns across trials. The spike-triggered aver-
age (STA) was computed for the thalamic and cortical unit for
stimulus segments from �30 ms before the spike to þ 5 ms
afterwards at a 0.2-ms resolution (Fig. 1C) from the long unfro-
zen white-noise segments. The VPm STA on the left shows
clear feature selectivity in the 10–15 ms before the thalamic
spike as evidenced by the large amplitude of the STA relative
to the shuffled case (gray confidence intervals). Beyond 15 ms
before the spike, the VPm STA is essentially flat and within
the confidence bounds on the shuffled process. This suggests
that, on average, the thalamic unit is only sensitive to the
stimulus occurring in the previous 10–15 ms. The S1 unit also

displays feature selectivity as evidenced by the shape and am-
plitude of the S1 STA immediately before the cortical spike rel-
ative to the shuffled case, shown on the right in Fig. 1C.
Although the VPm STA is nearly 10 times as large in ampli-
tude as the S1 STA (note the relative sizes of the scale bars),
the similarity in the temporal dynamics can be visualized by
scaling and shifting the VPm STA by 2 ms relative to the S1
STA (Fig. 1C, bottom, S1 STA black, VPm STA shifted by 2 ms
and scaled by a factor of 0.1 as gray dashed line). Together,
this suggests that after accounting for synaptic delay, the S1
neuron is time-locked to the same basic feature in the single
whisker sensory stimulus as the VPm neuron, but the reduc-
tion inmagnitudemeans that it is less consistently responsive
to this feature.

Although this simple comparison provides an interesting
observation for a single pair of topographically aligned neu-
rons, we also made comparisons of the feature selectivity
across the population of recorded neurons in thalamus and
cortex through this STA analysis. First, we visualized the
shape of the spike-triggered average for a sample of example
thalamic and cortical units (Fig. 1D). These STA filters for
each neuron cannot be simply averaged together to give an
estimate of the feature selectivity of the population of neu-
rons due to differences in the phase and directionality of the
recovered STA across different recorded units. Instead, uti-
lizing an approach from Estebanez et al. (19), we performed a
principal component analysis on the set of recovered tha-
lamic and cortical STA filters across each individual unit to
identify salient filter properties that generalized across the
population of recorded units (Fig. 1E). Importantly, this pro-
vides generalization across neurons within the same animal,
and across animals/experiments. The first two principal
components for the spike triggered averages of both thala-
mus and cortex explain the majority of the variance for the
set of recovered filters, similar to what has been seen previ-
ously for cortex (19). Furthermore, a simple time shift of 2.5
ms for the VPm principal components relative to the S1 prin-
cipal components (Fig. 1F, dashed lines shows time-shifted
VPm STA) to account for the synaptic delay demonstrates
the similarity in the STA subspace spanned by these princi-
pal components. It seems that despite not necessarily being
recorded simultaneously or even in the same animal, there
is a high degree of overlap in the low dimensional subspace
of feature selectivity for thalamocortical neurons in the
whisker pathway. Note that we further analyzed the spike-
triggered covariance (STC) for the same data and found that
the subspace spanned by the recovered linear filters
matched the subspace estimated using the linear filters
recovered using STA, thus not revealing any higher order
feature selectivity in the data.

Tonic and Burst Spike-Triggered Analysis in Thalamus

Inherent in the spike-triggered analysis, however, is an
assumption that the average filter is representative of the
sensory stimulus preceding all spikes (44), treating all spikes
as the same. Yet neurons in the thalamus are well known for
exhibiting two fundamentally different types of firing: tonic
spiking and burst firing mediated through T-type calcium
channels (5). Burst spikes were classified here from the
extracellular recordings as two or more spikes with an
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interspike interval of less than 4 ms with the first spike in
the burst preceded by 100 ms of silence (Fig. 2A, see
METHODS). Using this classification, we asked if or how the
feature selectivity of an individual thalamic unit changes as
a function of the spiking mechanism in the whisker
pathway.

In the thalamic recordings, tonic and burst spikes were
interspersed throughout most of the recordings. For the
example thalamic unit presented in Fig. 1C, we computed
the spike-triggered average from all spikes (STA), the tonic
spike-triggered average from only tonic spikes (tSTA), and
the burst spike-triggered average from only spikes that are
classified as being part of a burst (bSTA; Fig. 2B). The tSTA

(gray) closely resembles the STA computed from all spikes
(black) while the bSTA (red) is significantly degraded as evi-
denced by the flat shape of the filter. To compare the differ-
ence between burst and tonic feature selectivity across
thalamic units, we quantified the signal-to-noise ratio of the
STA (STASNR, see METHODS). Across all thalamic units, the
STASNR was higher for tonic spikes (tSTASNR) than for burst
spikes (bSTASNR; Fig. 2C). We also performed spike count
controls for tSTA (Fig. 2C; black dots, discussed further in
Temporal Precision of Thalamic Firing Modes). Note that
again we calculated the STC under these conditions and
found the same result that the STCSNR was higher for tonic
spikes than for burst spikes (P=2e-4, data not shown), and

Figure 1. Spike-triggered analysis in the thalamocortical circuit of the rat whisker pathway. A: experimental paradigm. B: example noise-evoked response
from simultaneously recorded topographically aligned pair of neurons. C: recovered STA for the example units. The black dashed vertical line indicates
the time of the spike. The gray bars indicate the confidence interval on an uncorrelated process. On the right, the VPm STA is plotted with a 2-ms delay
on the S1 STA as a gray dashed trace. D: representative example thalamic and cortical STAs. E: Top shows first two principal components (PCs) com-
puted using principal component analysis (PCA) of all recovered STAs for thalamic neurons (n =30) and cortical neurons (n = 32). Bottom shows the cor-
responding percent variance explained by all of the components, with the first two capturing the large majority. F: temporally aligned thalamic and
cortical principal components. Overlay of temporally shifted thalamic PCs (shift of 2.5ms, sign of VPm PC1 is inverted) on cortical PCs shown as dashed
curves (VPm PC1: black dashed, VPm PC2: gray dashed). a.u., arbitrary units; STA, spike-triggered average; Stim, stimulation; S1, primary somatosensory
cortex; VPm, ventral posteromedial.
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that there was not a fundamental shift in representation
between tonic and burst spiking.

If the timing of spikes within a burst is not repeatable and
structured, the presence of these additional spikes will serve

to destroy the temporal structure in the feature selectivity as
revealed by the spike triggered analysis. When the bSTA was
computed from only the first spike in each burst (Fig. 2B,
red-dashed line), there was still no significant feature

Figure 2. Spike-triggered analysis of burst and tonic spikes in thalamic neurons. A: burst definition. B: STA from thalamic unit presented in Fig. 1 esti-
mated from all spikes (black solid line, n =44,105 spikes), tonic spikes (tSTA; gray solid line, n = 36,558 spikes), a subsample of tonic spikes (tSTA; dashed
line, n =2,363 of 36,558 spikes), all burst spikes (bSTA; red solid line, n = 7,547 spikes), and the first spike in the burst (bSTA; red dashed line, n =2,363
spikes). C: STASNR across recorded population (n = 30 units). Red dots depict the STASNR for all bSTA computed from all burst spikes while open red
circles indicate the STASNR for bSTA computed from only the first spike in the burst (P = 1e-6). The vertical bars are used to connect the dots coming from
the same unit for visualization of the effect of isolating the first spike in the burst. Gray dots indicate the tSTASNR when computed from a subset of tonic
spikes matching the number of burst spikes. Green dot indicates the points for the example unit in B. D: example unit tonic and burst spike nonlinearity.
The nonlinearity (NL) is estimated as the ratio of the p(yjspike)/p(y) and is presented in arbitrary units (a.u). NL is binned according to the standard devia-
tion (s.d.) of the filtered stimulus (y) distribution. E: average nonlinearity across all units. F: burst and tonic firing rate [p(spike)] across recorded population
(n =30 units, P = 2.6e-5). Green dot denotes example unit in B. G: spike-triggered average using different spike classifications (see METHODS). Top: exam-
ple unit STA given different spike classifications (tisi < 4 ms: four shades of red, tisi < 10 ms: four shades of pink, tisi > 20 ms: four shades of gray).
Bottom: average STASNR across all recovered thalamic units for each spike classification (n = 30 units, tisi < 4 ms: red, tisi < 10 ms: pink, tisi > 20ms: gray).
a.u., arbitrary units; bSTA, burst spike-triggered average; bSTASNR, signal-to-noise ratio of the burst spike-triggered average; p(spike), firing
rate; p(spikejy), probability of eliciting a spike given a filtered stimulus value, y; p(y), probability of the filtered stimulus; STA, spike-triggered average;
STAnoise, STA variability amplitude; STAPP, STA peak-to-peak amplitude; STASNR, signal-to-noise ratio of the spike-triggered average; tisi, two or more
spikes with an interspike interval; tsilence, period with no spiking before the first spike in the burst of at least 100 ms; tSTA, tonic spike-triggered average;
tSTASNR, signal-to-noise ratio of the tonic spike-triggered average; VPm, ventral posteromedial.
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selectivity for this example unit. This can also be visualized
across units in the STASNR where the bSTASNR is plotted
when computed from all burst spikes (black dot) and when
computed from the first spike in each burst (red circle, Fig.
2C). Therefore, including all spikes in a burst (or not) does
not strongly impact the ability to estimate the feature selec-
tivity from the STA.

Given the estimated feature selectivity, we can compute
the static nonlinearity, or the input-output function, which
provides a mapping between this filtered stimulus (y), which
is the sensory stimulus convolved with the STA of a given
unit, and the spiking response of the neuron [p(spikejy);
probability of eliciting a spike given a filtered stimulus value,
y; see METHODS]. The slope of the nonlinearity reflects the
degree to which the neuron is “tuned” to the stimulus fea-
ture represented by the STA, as defined by the filtered stimu-
lus. When the feature selectivity closely matches the sensory
stimulus, the filtered stimulus (y) will be maximized. If the
neuron is strongly tuned to the STA, the probability of spik-
ing, p(spikejy), will be selective for higher filtered stimulus
(y) values. If the neuron is not strongly tuned to the STA,
then the probability of spiking, p(spikejy) will be invariant to
the filtered stimulus such that the slope of the nonlinearity
is flat. Therefore, a steep slope indicates that sensory stimuli
that closely resemble the STA of the neuron will drive the
neuron to fire whereas a shallow slope indicates that the sim-
ilarity between the sensory stimulus and the STA is not a
strong predictor of the spiking response. Here, we used the
tSTA as the filter for all spiking conditions when estimating
the nonlinearity. The probability of the filtered stimulus p(y)
remains unchanged when the filter is held constant.
Therefore, any difference in the nonlinearity is then only
due to differences in the probability of the filtered stimulus
given that a spike occurred [p(yjspike)]. In this example unit,
we found that the tonic spikes were well tuned to the STA, as
evidenced by the steep slope of the nonlinearity, whereas
the burst spikes were not well tuned to the STA, as evidenced
by the relatively flat nonlinearity (Fig. 2D). Here, the nonli-
nearity (NL) is defined as the p(yjspike)/p(y). This trend was
consistent across units where the burst spikes showed
reduced tuning to the tSTA as compared with tonic spikes as
assessed by the slope of the spiking nonlinearity (Fig. 2E).
Here, we have separated the difference in the slope of the
nonlinearity from the difference in the prevalence of burst
and tonic spikes [p(spike) or firing rate], which is markedly
higher for tonic spikes than for burst spikes (Fig. 2F).

The classification of spikes belonging to a T-type calcium
channel burst is based on criteria on the interspike intervals
(see METHODS). The measures here could thus be sensitive to
the specific criteria imposed. We therefore tested alternative
burst spike classifications and quantified the implication for
the STA. Thus far, we classified a burst spike as being two or
more spikes with an interspike interval of less than 4 ms
(tisi < 4ms) and a period with no spiking before the first
spike in the burst of at least 100 ms (tsilence > 100ms).
However, if we relax this definition to allow the silence win-
dow to shorten (tsilence > 100ms) while maintaining the strict
interspike interval (tisi < 4ms), the STASNR remains largely
unchanged (Fig. 2G, top: example unit in red scale, bottom:
summary data in red). If we further relax the burst condition
to allow the interspike interval to be up to 10 ms

(tisi < 10ms), the STASNR is larger but does not achieve the
levels seen for tonic spikes (Fig. 2G, top: example unit in
pink scale, bottom: summary data in pink). If we now restrict
the tonic spikes to only include spikes that have a minimum
of a 20-ms interspike interval with the next spike
(tisi > 20ms), the STASNR is maximized (Fig. 2G, top: example
unit in grayscale, bottom: summary data in gray). This sug-
gests that any tonic spiking incorrectly classified as part of a
burst would serve to increase the amplitude, and thus the
SNR, of the burst-triggered average, but the conservative def-
inition of a burst pattern that we have used here likely mini-
mizes this effect. The opposite is also the case such that
burst spikes that are misclassified as tonic would reduce the
amplitude of the tSTA. Interestingly, across spiking classifi-
cations, increased periods of silence before the spike (tsilence)
tended to lead to decreased STASNR, as shown for the exam-
ple at the top of Fig. 2G. Although the relationship was some-
what variable for this particular example, on average across
the larger data set, there was a monotonic relationship
between tsilence and STASNR, regardless of the burst/tonic clas-
sification (Fig. 2G, bottom), presumably due to more strictly
excluding tonic spiking from the analysis. Therefore, our data
suggests a reduction in stimulus selectivity for burst spiking
perhaps not due to a true loss of feature selectivity, but
instead due to changes in temporal precision relative to the
timescale of the stimulus features to which this analytic
framework is particularly sensitive.

Optogenetic Manipulation of Thalamic State

The previous analysis was conducted by presenting sen-
sory white-noise stimuli and parsing measured thalamic
spiking activity into tonic and burst classes, while these
classes of spiking were intermingled throughout the record-
ings. However, the thalamus was in tonic firing mode, with
relatively low burst firing rates (Fig. 2F). Additionally, when
bursts do occur intermittently, presumably this is due to a
local transient fluctuation in thalamic membrane potential,
rather than a sustained change in membrane potential that
would be reflective of thalamic “state.” Here, we used opto-
genetic hyperpolarization of the thalamic neurons not to
silence the thalamic neurons, but instead to shift the thala-
mus into a burst firing mode during sensory white-noise
stimulation (Fig. 3A). Using this optogenetic manipulation,
we asked whether the optogenetically manipulated firing
mode (baseline and hyperpolarized conditions) of the thala-
mus impacts encoding as measured through the STA analy-
sis used previously.

Here, we transfected excitatory thalamic neurons with a
hyperpolarizing opsin. Successful targeting of opsin expres-
sion to VPm was confirmed functionally by first classifying
neurons as putatively VPm neurons (see METHODS) and then
as light responsive by looking at the light offset rebound
response. Opsin expression was confirmed histologically by
the expression location within the thalamus as well as the
expression of the axon terminals within S1 L4 barrels (Fig.
3A). We recorded the thalamic response to sensory white
noise with and without the presence of an optogenetic light
stimulus (hyperpolarized and baseline conditions, respec-
tively). Surprisingly, we found no significant change in the
thalamic firing rate between hyperpolarized and baseline
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Figure 3.Optogenetic manipulation of thalamic state. A: experimental paradigm. Scale bar: 1mm. YFP signal (green) shows injection site in thalamus and
axonal projections in cortex. B: baseline and hyperpolarized firing rate [p(spike)] across recorded population (n = 10 units. P > 0.05). In all subpanels, the
example unit in panels F–H is indicated by a green dot. C: characterization of the burst ratio (P = 0.021). D: the spikes per burst (P > 0.05). E: the within
burst ISI (P = 0.021) during baseline and hyperpolarized conditions across the population of thalamic units (n = 10 units). F: example thalamic response to
frozen white-noise segments without (baseline) and with (hyperpolarized) optogenetic manipulation. Tick marks in raster plot are pseudocolored to dem-
onstrate classification as burst (red tick) or tonic (gray tick) spikes. G: spike-triggered average computed as a function of spike classification (burst/red,
first spike in burst/red dashed, tonic/gray) or optogenetic condition (baseline/black, hyperpolarized/yellow). H: example unit tonic/burst and baseline/
hyperpolarized spike nonlinearity. I: STASNR across recorded population (n = 10 units). J: average nonlinearity across all units (n = 10 units). a.u., arbitrary
units; ISI, interspike interval; NL, nonlinearity; STA, spike-triggered average; STASNR, signal-to-noise ratio of the spike-triggered average; VPm, ventral
posteromedial; y, filtered stimulus value; YFP, yellow fluorescent protein.
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conditions (Fig. 3B), but the firing mode of the thalamus did
shift toward burst firing (baseline burst ratio =0.16±0.15,
hyperpolarized burst ratio=0.36±0.27, n = 10 units, Fig. 3C).
Because the mean firing rate in VPm in response to sensory
white noise was not significantly different between the base-
line and hyperpolarized conditions, this is reflecting a
“replacement” of tonic firing with burst firing. Bursts in the
hyperpolarized condition showed a similar number of spikes
per burst (Fig. 3D) with a shorter interspike interval within a
burst (Fig. 3E). For a small subset of neurons, we collected
responses to frozen white noise. For an example unit, we
have plotted the spiking response to a frozen white-noise
segment without optogenetic manipulation (Fig. 3F, baseline
condition) and with optogenetic manipulation (Fig. 3F,
hyperpolarized condition). We have pseudocolored the tonic
spikes gray and the burst spikes red to qualitatively visualize
the thalamic firing mode (Fig. 3F). In the baseline condition,
the response is primarily tonic as evidenced by the gray ras-
ter plots (Fig. 3F, baseline, BR=0.10). In the hyperpolarized
condition (optogenetically manipulated), the firing mode is
biased toward a burst encoding scheme, as evidenced by the
prevalence of red burst spikes (Fig. 3F, hyperpolarized,
BR=0.67). The STA analysis was conducted in two different
ways. First, as in Fig. 2, the analysis was conducted from the
classified tonic and burst spikes. The tonic STA showed pro-
nounced feature selectivity for this unit while the burst STA
did not (Fig. 3G red/gray), consistent with the earlier findings
reflective of the loss in timing precision for the first spike of
a burst (Fig. 2). Second, the STA analysis was repeated for
each condition, where the baseline STAwas computed for all
spikes in the baseline condition and the hyperpolarized STA
was computed for all spikes in the hyperpolarized condition.
The baseline STA has prominent feature selectivity while the
hyperpolarized condition is much smaller in amplitude (Fig.
3G, yellow/black). Qualitatively, we can see that the STA
from the hyperpolarized condition reflected the STA
obtained from the burst spiking in the previous analysis.
Again, a subsequent analysis of the STC revealed representa-
tions that were redundant with the spike-triggered average,
and no apparent shift in feature selectivity between the tonic
and burst firingmodes.

The similarity between the analyses based on burst spik-
ing and in the hyperpolarized condition can also be seen in
this example nonlinearity where the burst and hyperpolar-
ized nonlinearities are effectively flat while the tonic spikes
and baseline condition show obvious tuning as evidenced
with steep slopes (Fig. 3H). Across units, we found an overall
reduction in the STASNR for the hyperpolarized condition
relative to the baseline condition (Fig. 3I, P = 0.037). We also
found that the tuning (i.e., selectivity to the particular sen-
sory feature represented by the STA) was lower for the hyper-
polarized condition relative to the baseline condition as
reflected in the overall gain/slope of the nonlinearity (Fig.
3J). Importantly, the baseline and hyperpolarized conditions
both contain burst and tonic spikes to varying degrees. For
this analysis, we have optogenetically altered the spiking
probabilities such that the baseline condition has more tonic
spikes and the hyperpolarized condition has more burst
spikes (Fig. 3C) while maintaining similar numbers of spikes
(Fig. 3B). The similarities between the STA and the NL prop-
erties when the analysis was based on burst spikes versus all

spikes in the hyperpolarized condition, as well as when the
analysis was based on tonic spikes versus all spikes in the
baseline condition, suggest that there was no discernable dif-
ference for the estimation of feature selectivity when
assessed based on the state of the thalamus (hyperpolarized/
baseline) versus the spike type classification (burst/tonic).
Thus, the properties of the burst spiking are similar when
the thalamus is artificially induced into a burst mode
through optogenetic hyperpolarization, as compared with
the burst spiking that occurs intermittently in the baseline
case due to local transient fluctuations in thalamic mem-
brane potential.

Temporal Precision of Thalamic Firing Modes

Given the difference between the recovered estimates of
burst/hyperpolarized and tonic/baseline feature selectivity
and the implications for timing precision in the thalamocorti-
cal circuit, we implemented a series of computational controls
to identify any potential shortcomings of the methodologies
that could underlie these results.

The first issue we considered was the overall difference in
spike rates. Spike-triggered analyses require a large number
of spikes to effectively estimate the underlying selectivity.
The proportion of spikes classified as bursts was lower than
the spikes classified as tonic (Fig. 2F) as quantified by the
burst and tonic firing rate. Therefore, it was possible that we
could not recover an STA for the burst spiking due to the
reduced number of burst spikes relative to tonic spikes. In an
example unit, we computed the tSTA using only a subset of
the spikes (n = 2,363 of 36,558 spikes corresponding to n =
2,363 bursts with n = 7,547 burst spikes) and found that the
linear filter was essentially identical to the tSTA (Fig. 2B,
gray dashed line). We computed this for all thalamic units
and again found that the burst-count matched tSTA was also
significantly larger than the bSTA (Fig. 2C; black dots).
Furthermore, there was no statistically significant difference
in the firing rate between the baseline and hyperpolarized
optogenetic conditions (Fig. 3B), but still the difference in
the STA persisted. This suggests that simple spike counts
alone were insufficient to explain the difference in the tonic/
baseline STA and the burst/hyperpolarized STA.

The second issue we considered was the inherent assump-
tion that the feature selectivity for each unit could be recov-
ered as the STA. It was possible that the burst STA was not
recoverable because the burst firing mode was better esti-
mated by a symmetric nonlinearity and therefore the filter
could only be recovered using spike triggered covariance
(STC) techniques. The STC approach has been previously
implemented in the vibrissa pathway (19, 20, 36), revealing
potential feature selectivity not captured with STA and was
therefore important to consider here. We therefore com-
puted the STC for all recorded thalamic units and compared
this for each spiking condition. Although the data set was
more limited because the number of units with a significant
STC filter was lower than those with a significant STA filter
(n = 13 units with STC filter compared with n = 30 units with
STA filter), the same trends regarding the reduction in the am-
plitude of the filter (STCSNR) and the slope of the symmetric
nonlinearity persisted (as described in RESULTS). Therefore, this
suggests that the method of extracting the feature selectivity
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(STA compared with STC) was insufficient to explain the
inability to estimate the feature selectivity in the hyperpolar-
ized/burst spiking conditions. However, it is also possible that
the feature selectivity for a given neuron shifts to a higher-
order space as firing modes transition from tonic to burst fir-
ing. If the burst firing could be associated with higher-order
structure in the sensory stimulus, it may only be revealed
using STC analysis. We thus conducted a STC analysis of the
recorded neurons. First, we found that the tonic STASNR was
significantly larger than the burst STCSNR (P=3e-6), suggest-
ing that the feature selectivity did not simply shift from the
first-order estimate of the STA to higher order representations
captured by the STC. Then we assessed the probability that a
unit with a significant filter, as assessed using STA, also
showed a significant filter, as assessed using STC. We found
that all 13 units with significant STC filters also showed signif-
icant STA filters. This emphasizes the complexity of the stim-
ulus representation but further underscores that the stimulus
representation did not simply shift from tonic to burst firing.
Therefore, this analysis revealed that in general the high-
order structure captured by STC was insignificant compared
with the first-order structure revealed by STA, and that when
there was a loss of structure in the STA in the burst mode of
firing, no new higher-order feature selectivity emerged
through the STC analysis.

The third assumption made throughout the analysis was
that burst spikes are actually driven by sensory stimuli such
that there is a recoverable burst spike feature selectivity. The
alternative explanation would be that burst spikes are not
feature selective and instead occur randomly due to intrinsic
or other nonsensory processes. As can be seen in Fig. 3F, the
qualitative assessment of temporally aligned bursts in
response to the frozen white-noise segment suggests that the
bursts are driven by the sensory stimulus in a repeatable
way. Although this is a qualitative observation, this suggests
that the bursts are not randomly generated or due entirely to
a nonstimulus-related phenomenon.

From these controls, we propose that the difference in the
spike-triggered encoding properties could not be attributed
to differences in the overall spike rates, the temporal proper-
ties of the spikes within the burst, or the mechanism of filter
estimation. Instead, we propose that the burst spikes are
driven by the sensory stimulus and have an underlying fea-
ture selectivity, but that burst spiking has reduced temporal
precision relative to tonic spiking as reflected in the STA
analysis.

Recovering feature selectivity from spike-triggered analy-
sis relies on precise temporal spiking relative to the sensory
stimulus. The STA analysis relies on long sequences of
unique (unfrozen) white noise stimulus sequences, and thus
many of the recorded units were not presented withmultiple
repetitions of frozen white noise sequences, precluding a
direct assessment of timing variability (see METHODS).
However, the effects of timing variability can be assessed
through simulation. To simulate degradation of the spike
timing precision, we added independent samples of nor-
mally distributed temporal jitter of varying amplitudes
(standard deviation of the jitter distribution) to each tonic
spike for an example unit and computed the STA (Fig. 4A).
Across units, we quantified the degradation of the STA as the
jittered-STASNR normalized by the tSTASNR (0-ms jitter). The

jittered-STASNR (black) is within the band expected for the
bSTASNR with the addition of 4 ms of jitter to the spike times
(red shaded, Fig. 4A, right). We propose that the effects of
temporal jitter are particularly evident for whisker selectiv-
ity, presumably due to the short temporal duration of the fil-
ters (�10–15 ms in duration, Fig. 1F).

Given the marked effects of jitter on the ability to recover
the STA, we investigated the variability in the spike timing
relative to the noise stimulus (Fig. 4B). For this example
unit, we have identified a segment in the noise stimulus that
closely resembles the tonic STA for this unit and elicits a reli-
able spiking response (Fig. 4B, top; stimulus—black, tSTA—
gray dashed). The vertical dashed line indicates the spike
time for the spike triggered average (t0). If there was no vari-
ability in the neural spiking, the raster plots would all be per-
fectly aligned to t0 because the similarity between the
stimulus and the STA would predict a spiking response at
that time point. However, the timing of evoked neural
responses is always variable to some extent and this can be
visualized for this example response segment as the tempo-
ral variability of the spike times surrounding this stimulus
feature in the noise stimulus (Fig. 4B). For this example
snapshot, it is also apparent that the burst spikes in the
hyperpolarized condition show greater temporal variability
than the tonic spikes in the baseline condition.

To quantify this jitter across all spikes, we developed a
sjitter metric that determines the time lag of the peak correla-
tion between the STA and the stimulus segment [s(tj)] sur-
rounding each spike (Fig. 4C). Intuitively, this is a correlative
method to identify the time lag between when we predict a
spike is most likely to occur based on the STA and the stimu-
lus (peak correlation) and when the spike actually occurred.
For this analysis, we treated the tSTA as the true feature se-
lectivity of the neuron across all spiking conditions because
we could not recover a reliable estimate of the bSTA.

We computed sjitter for each spike and plotted sjitter distri-
butions for tonic spikes, burst spikes, hyperpolarized condi-
tion, and baseline condition. If a neuron was infinitely
precise such that when the stimulus matched the spike-trig-
gered average, the neuron fired a spike without delay, this
distribution would be represented by a delta function at sjitter
equals zero. As the variability of the timing increases, the
width of this distribution will also increase. For the tonic
spiking and baseline condition, we found a clear peak in sjitter
values at sjitter equals zero (Fig. 4C, gray, black). For the burst
spiking and hyperpolarized condition, we observe little-to-
no peak in the sjitter metric at zero (Fig. 4C, red, yellow). We
computed the sjitter distribution across all thalamic units and
found that the tonic spiking and baseline condition had
higher peaks at sjitter equals zero than the burst spiking and
hyperpolarized condition (Fig. 4D). We quantified this statis-
tically by computing a precision metric (Fig. 4C) that com-
putes the proportion of spikes within ±1 ms of sjitter equals
zero (Fig. 4E). The tonic spiking and baseline condition were
more precise than burst spiking and hyperpolarized
condition.

These data suggest that tonic spiking showed greater tem-
poral precision in response to the sensory white-noise than
burst spiking and that this could underlie the difference in
the recoverability of the feature selectivity in the thalamus
between firing modes. It is well established that the timing
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of sensory inputs is particularly important in the thalamo-
cortical circuit such that changes in thalamic spike timing
could have large impacts on the downstream representa-
tion of sensory information in the cortex. Next, we investi-
gated how these changes in temporal precision in
optogenetically modulated thalamic states impact cortical
encoding properties.

Optogenetic Modulation of Thalamic Firing Modes
Directly Impacts Cortical Timing Precision

Cortical neurons that receive direct thalamic input are
integrating information over a population of thalamocorti-
cal neurons that can be exhibiting different firing charac-
teristics. This makes it difficult to determine the impact of

a single burst from a single neuron on information repre-
sentation in the pathway. Instead, we used the optogenetic
manipulation of thalamic state as presented in Fig. 3 to
bias the activity of the thalamic population toward burst
firing (hyperpolarized condition) while recording the cort-
ical activity extracellularly to quantify the effect of burst-
ing downstream (Fig. 5A).

For an example unit, we have plotted the cortical STA in
the baseline and hyperpolarized VPm conditions (Fig. 5B).
Here, the amplitude of the cortical STA was smaller when
the thalamus is hyperpolarized compared with when it is not
(Fig. 5B). This cortical unit also shows a reduced slope of the
nonlinearity when the thalamus was hyperpolarized (Fig.
5C), and thus a decrease in tuning to the stimulus feature
represented by the STA. Across the population of recorded

Figure 4. Thalamic timing variability in the response to the sensory white noise. A: effect of increased jitter on thalamic STA (schematic: left, example:
center). Across units (n = 30), the normalized amplitude of the jittered STA (jittered STASNR/tSTASNR) was plotted across jitter intensities (black, right). The
normalized amplitude of the burst STA (bSTASNR/tSTASNR) is shown in red (mean ± SD). B: in this example, the same stimulus (black; scale bar: 0.1�) was
presented with and without optogenetic hyperpolarization [data from example unit presented in Fig. 3 with associated STA (gray dotted line)]. C: exam-
ple unit sjitter distributions for burst spikes (n =2,107 spikes), tonic spikes (n =23,023 spikes), baseline condition (n = 11,361 spikes), and hyperpolarized
condition (n = 11,662 spikes). D: average sjitter distributions for burst/tonic spikes (n = 30 units) and baseline/hyperpolarized condition (n = 10 units; mean ±
SE). E: precision for burst/tonic spikes (n =30 units, P = 1e-6) and baseline/hyperpolarized condition (n = 10 units; mean ± SE, P = 1e-3). bSTASNR, signal-to-
noise ratio of the burst spike-triggered average; STA, spike-triggered average; STASNR, signal-to-noise ratio of the spike-triggered average; tSTASNR, sig-
nal-to-noise ratio of the tonic spike-triggered average; VPm, ventral posteromedial.
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cortical neurons, the same effect seen in this example neu-
ron of a reduced STASNR when the VPm was hyperpolarized
compared with when it was not (Fig. 5E) and a reduction in
the slope of the nonlinearity was present (Fig. 5F). These

findings mirror what was seen for thalamic neurons when
comparing the baseline and the optogeneticallymanipulated
conditions demonstrating that the changes in thalamic
encoding properties are propagated to cortex. Note that we

Figure 5.Optogenetic modulation of thalamic fir-
ing modes directly impacts cortical representa-
tion of sensory information. A: experimental
paradigm. Scale bar: 1mm. YFP signal (green)
shows axonal projections into cortex. A fluores-
cent dye (DiI) was used on the probe to confirm
recording location. B: example STA for a cortical
unit recorded during optogenetic manipulation
of the thalamus (black: baseline thalamic condi-
tion, yellow: hyperpolarized thalamic condition).
C: example cortical nonlinearity as a function of
thalamic state. D: cortical firing rate during tha-
lamic manipulation (n =32 units, P = 0.31). E:
STASNR across cortical units (n = 32 units; P = 1e-
6). F: spiking nonlinearity across cortical units
during thalamic manipulation (n = 32 units). G:
example cortical unit sjitter distributions for base-
line (n = 12,862 spikes) and hyperpolarized
(n = 11,848 spikes) thalamic conditions. H: aver-
age sjitter distributions for baseline/hyperpolar-
ized thalamic condition (n =32 units, mean ± SE).
I: precision for cortical spikes during baseline/
hyperpolarized thalamic condition (n =32 units,
P =8e-6). J: trial-to-trial jitter for cortical spikes in
response to frozen white-noise segments during
baseline/hyperpolarized thalamic conditions (n =
32 units, P = 0.01). a.u., arbitrary units; NL, nonli-
nearity; n.s., not significant; STA, spike-triggered
average; STASNR, signal-to-noise ratio of the
spike-triggered average; S1, primary somatosen-
sory cortex; VPm, ventral posteromedial; y, fil-
tered stimulus value; YFP, yellow fluorescent
protein.
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again conducted the STC analysis with the S1 neurons and
found the same reduction in STCSNR when the VPm was
hyperpolarized compared with when it was not (P=9e-5),
suggesting that the loss of feature selectivity in S1 with tha-
lamic hyperpolarization was not just due to the transfer of
feature selectivity to higher-order characteristics.

Interestingly, there was no significant difference in the
stimulus-evoked firing rate in the cortex in the baseline and
thalamic hyperpolarized conditions (Fig. 5D). This suggests
that it was not overall spike counts influencing the cortical
feature selectivity. Instead, we propose the temporal jitter in
the thalamic spiking patterns propagated to cortex. We
investigated the temporal precision of the cortical spiking in
response to the sensory white noise using the same method-
ology employed for the thalamus. As we saw for the thala-
mus, the cortical spikes from this example unit also showed
greater temporal precision in response to white-noise
whisker stimulation in the baseline VPm condition com-
pared with the hyperpolarized VPm condition (Fig. 5G) as
evidenced by the peak in the sjitter distribution around sjitter
equals zero. This effect was consistent across the population
of recorded cortical units (Fig. 5H) and showed significant
differences in the precision of the cortical firing (Fig. 5I). We
further analyzed the trial-to-trial jitter from the cortical
responses to frozen white noise segments. We identified
events as peaks in the peristimulus time histogram and
aligned these events to generate an event aligned histogram.
A Gaussian function was fit to this histogram and the stand-
ard deviation was defined as the trial-to-trial jitter (see
METHODS). Confirming the jitter metric defined for thalamic
units, the trial-to-trial jitter metric also showed an increase
in the hyperpolarized thalamic condition relative to the
baseline thalamic condition (Fig. 5J). This suggests that
the temporal jitter present in the thalamus is transmitted to
the cortex.

DISCUSSION
Although there have been extensive investigations into

the cortical state-dependent processing of the thalamocorti-
cal circuit (45), we know surprisingly little about how infor-
mation is processed in a thalamic state-dependent manner.
Here, using a combination of optogenetic manipulation and
electrophysiological recording techniques, we have per-
formed a series of experiments modulating the state of the
thalamus (through constant optogenetic hyperpolarization)
and quantified the effects on encoding in the thalamocorti-
cal circuit. Using this technique, we have coarse control of
the firing mode in thalamus without altering the processing
occurring from the whisker to thalamus, enabling us to
decouple the changes in thalamic firing mode on thalamo-
cortical processing from changes occurring in subthalamic
processing. We found that thalamic burst firing, during both
baseline activity and in optogenetically induced burst mode,
was associated with a loss of apparent feature selectivity on
precise timescales revealed through spike-triggered analysis,
consistent with an increase in burst spike timing variability
(loss of timing precision) relative to tonic spike timing.
Corresponding recordings from barrel cortex during optoge-
netically induced thalamic burst mode demonstrated a loss
in the temporal precision of the cortical spiking that also led

to a degradation of the recovered feature selectivity. This
suggests that, although both thalamus and cortex remain
well driven by sensory input during optogenetically induced
thalamic burst mode, bursts in the whisker pathway are less
precise than tonic spikes during ongoing weak sensory stim-
ulation and that this loss of temporal precision is propagated
to cortex, which could have implications for the integration
of complex patterns of sensory inputs.

In the visual pathway, distinct sensory selectivity has
been identified for burst versus tonic firing (9–13). Although
not explicitly forcing the thalamus into a burst mode where
bursting is prevalent, as we have done here, these studies
found that the burst response is reliably elicited across trials
in response to sensory stimulation (11, 13, 14) and the feature
selectivity of the bursts is characterized by a prolonged in-
hibitory stimulus before the depolarizing input that occurs
immediately before the spike onset. Furthermore, bursts eli-
cited in response to visual stimulation have been found to be
temporally precise on the order of a fewmilliseconds (9) and
alterations in the amount of bursting from a neuron can
change its transfer function (46). Studies of the retinogenicu-
late pathway have also shown that the thalamic burst mode
is more likely to elicit a response to incoming retinal spiking
inputs (47, 48). Collectively, these earlier studies demon-
strated that burst spikes convey relevant sensory informa-
tion, as quantified through temporal or spatial receptive
field mapping, that can be distinct from the tonic spikes (11,
12, 49).

The findings presented here seem counterintuitive rela-
tive to some of the findings in the visual pathway and thus
deserve further discussion. One critical difference between
the visual and the somatosensory pathway is the characteris-
tics of the natural stimulus space. Bursting responses are ro-
bust in the representation of natural scenes in the visual
pathway (11). Althoughwhite-noise stimulation used here pro-
vides an unbiased sampling of the stimulus space that
enabled estimation of the feature selectivity, it was also a rela-
tively weak stimulus and did not contain the strong transients
present in either the binary white noise or the natural scenes
previously utilized to probe the visual pathway. Providing
more naturalistic stimulation both temporally, with the
strong transients associated with stick-slip whisker motions
(50), and spatially using multiwhisker coordinated move-
ments (19, 21) could drive different patterns of bursting activ-
ity from what is elicited by relatively weak sensory white
noise.

Beyond the stimulus selectivity and characteristics, there
are also known anatomical differences between the visual
and somatosensory thalamus that would directly affect the
local inhibition required to elicit a bursting state. Although
the rodent whisker thalamus receives its primary inhibition
from the thalamic reticular nucleus (TRN) (51), the rodent
visual thalamus [lageral geniculate nucleus (LGN)] also has
local interneurons that receive direct synaptic drive from the
retina. This enables local feedforward and feedback inhibi-
tion within the LGN to shape the feature selectivity of the
pathway (52, 53). In addition to the complex processing of
the visual signals by the retina itself that shape the input to
thalamus, the LGN has structured excitation and inhibition
in the recovered feature selectivity (ON/OFF) that enables
reliable inhibitory stimulation regimes. This might suggest
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differences in the temporal precision of the inhibition that
directly impacts the precision of burst spiking and could
underlie the different burst spike feature selectivity in the
visual and somatosensory thalamus.

Although spike-triggered analysis has been widely applied
in various pathways, there have been comparatively few
studies of this nature in the vibrissa pathway despite the
extensive utilization of this model system. In this study, we
focused primarily on timing in the thalamocortical circuit,
and used the spike-triggered analysis as a vehicle to probe
this issue rather than uncovering novel aspects of feature se-
lectivity related to whisker kinematics. Nevertheless, it is im-
portant to note the similarities and differences between
these studies. Spike-triggered averaging of VPm neurons in a
study from Petersen et al. (20) revealed very similar feature
selectivity to what we report for VPm in baseline conditions
here, with spiking tending to be preceded by a very fast tran-
sient, biphasic whisker deflection. Studies in cortex, how-
ever, reveal more complex properties. Although the basic
feature selectivity that we uncovered for S1 neurons in base-
line conditions using STA was very similar to what has been
observed in a subset of recorded neurons in other cortical
studies (19, 36), further analysis using STC as well as more
elaborate whisker stimulation paradigms in these studies
identified more complex encoding properties. It should be
noted that we restricted analysis to cortical S1 neurons that
exhibited significant feature selectivity in the baseline condi-
tion with STA, but also observed other cortical neurons that
showed significant feature selectivity only using STC, con-
sistent with these previous studies. For these neurons, the
filters recovered using STC analysis for tonic spikes were lost
when they were computed for burst spikes, as the STC analy-
sis is also reliant on precise spike-timing relative to the sen-
sory stimulus.

It is also theoretically possible that the bursting feature
selectivity is not degraded or lost but instead transformed
to a type of selectivity that is not captured through the
simple characteristics of the spike-triggered averaging. As
described above, previous studies have utilized STC analy-
sis to successfully uncover complex feature selectivity in
the visual (54) and somatosensory (19, 36) pathways.
However, when we extended the analysis here to the
spike-triggered covariance (STC), it was not the case that
the timing changes were captured through covariance
analysis. For both the thalamic VPm and cortical S1
recordings, there was no apparent shift in feature selectiv-
ity from first-order structure (STA) to higher-order struc-
ture (STC) with a change in thalamic firing mode or state.
Units with significant features in the tonic spiking condi-
tion did not show significant features in the burst spiking
condition, even when assessed using both STA and STC.
However, because the feature selectivity of the burst
spikes was unrecoverable using spike triggered analysis,
we have proposed that the stimulus selectivity is main-
tained across spiking conditions. This contrasts with what
has been shown in other sensory modalities, most notably
vision. As with the spike triggered analysis, any burst fea-
ture selectivity that is fundamentally different from the
tonic feature selectivity cannot be captured in the spike-
triggered analysis due to the timing variability of the spik-
ing. This selectivity can only be theoretically identified

through measuring, and compensating for, the increased
spike timing jitter, as this framework is inextricably linked
to the timing precision with which neurons spike relative
to the sensory input.

There are multiple mechanisms that could underlie the
reduced temporal precision in the burst firingmode including
variability introduced by the slow dynamics of the calcium
depolarization, increased variability in the time to reach
threshold due to the prolonged hyperpolarization of the base-
line polarization, as well as potential changes in the integra-
tion properties of the thalamic neurons. Furthermore, these
mechanisms could act independently such that the variability
across neurons is uncorrelated or these mechanisms could be
coordinated in some way to enable correlated variability
across the thalamic population. Both coordinated and uncoor-
dinated jitter would have a detrimental effect on the ability to
recover the STA because either the spike timing would no lon-
ger be locked to the stimulus itself or the input to the cortex
would be temporally imprecise. However, coordinated jitter
would maintain the information about the stimulus while
uncoordinated jitter would degrade the recoverability of the
stimulus features with the spike-triggered approach. Future
work is needed to investigate the jitter in the burst spiking
across the population to determine whether or not the vari-
ability in the spike timing is coordinated across thalamic units
in this context.

Although thalamic feature selectivity was disrupted for
both burst spiking during baseline activity and all spiking
during optogenetically induced thalamic burst mode, the
utilization of the hyperpolarizing optogenetic scheme was
particularly important for capturing the impact of thalamic
bursting on the downstream cortical activity in the context
of sensory signaling. Cortical layer 4 neurons are thought to
be primarily driven through the aggregate synaptic input of
50–100 thalamocortical projections (8). The bursting activity
observed during the weak white noise sensory stimulation at
baseline is not coordinated across the thalamic population
(2). However, the optogenetic manipulation biases the tha-
lamic population towards bursting, enabling the characteri-
zation of cortical feature selectivity attributed to modes
dominated by either tonic (baseline) or burst (thalamic
hyperpolarized) firing. Importantly, we found that the corti-
cal firing rate was remarkably invariant to thalamic hyperpo-
larization despite the prevalence of thalamic bursting.
Further, although we expected to find increased sensitivity
of cortical neurons during thalamic hyperpolarization, we
found the opposite through the spike-triggered analysis
using the weak white sensory noise stimulus here. The
effects in S1 were weaker than those seen in thalamus, but
we believe this is because the effects are aggregated across
the population of thalamic units that have variable opsin
expression levels and variable light stimulation due to physi-
cal distance from the optic fiber as well as population cortical
activity that impacts the variability of sensory encoding (55).
This does not, however, necessarily conflict with previous
findings that have shown increased thalamocortical synaptic
efficacy with thalamic bursts (7) primarily due to the silence
period preceding the first spike in the burst (56, 57).
Individual projections could have an enhanced effect during
bursting, whereas disruption in the timing across thalamic
projections could work in the opposite direction. Further,
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although viral transfection was targeted to VPm, the opsin
expression extended beyond the borders of VPm into neigh-
boring excitatory thalamic nuclei. Although the optrode
recordings were specifically targeted to VPm neurons, as
identified functionally, it is likely that there was off-target
excitation of multiple nuclei, including the posteromedial
complex (POm) of the thalamus. Off-target excitation of
POm could have compounding effects on the results found
here, notably across layers due to the differential projection
patterns of VPm and POm thalamocortical axons. Given the
uncertainty around feature selectivity in the POm, it would
be difficult to predict what impact this would have on the
temporal precision. Future work targeting POm state
changes would help to elucidate the differential role of POm
on detailed sensory encoding in a thalamic state-dependent
manner relative to VPm.

These results could be interpreted as consistent with the
view that bursts are not representing detailed stimulus infor-
mation. However, there is evidence that bursts may convey
more information than the “all-or-none” presence or ab-
sence of a burst through interburst spike timing and the
number of spikes per burst (58), suggesting a role of tempo-
rally precise burst firing in information representation.
Furthermore, thalamic bursting can be temporally precise
within and across neurons in response to high intensity
whisker stimuli (2). Instead, we propose that the temporal
precision of the thalamic firing is a function of both the state
of the thalamus and the intensity of the sensory stimulus. It
has previously been shown that the temporal precision of
thalamic encoding increases with the intensity of the sen-
sory stimulus (2, 59) while here we have shown that the tem-
poral precision of the thalamic firing decreases with
sustained hyperpolarization, which would naturally have
implications for what signals do and do not get conveyed
through the relatively narrow cortical window of integration
(60). These two competing factors would enable the burst fir-
ing mode to encode high amplitude stimuli in a temporally
precise fashion while low amplitude stimuli, such as the sen-
sory white noise presented here, would not be able to over-
come the variability present in the burst state, which sets the
stage for the selective transmission of elements of the sen-
sory input that may separate “signal” from “noise.”

Although we have primarily considered thalamic state-
dependent encoding as a feedforward representation
from thalamus to cortex, the highly interconnected thala-
mocortical circuitry shapes coding properties in both
feedforward and feedback manners. Changes in thalamic
activity impact cortical activity which then provides feed-
back to thalamus to further alter activity (4, 61–64). It is
possible for the thalamus to influence cortical state and
for the cortex to influence thalamic state, but how this
plays out during natural behaviors is not yet known and
must be decoupled using techniques such as closed-loop
control of neural activity (65–67) that enable interactive
probing of this complex circuit.
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