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Primary Tactile Thalamus Spiking Reflects Cognitive Signals
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Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied
the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm;
the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one
whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related
variables that are predictive of actual decisions. The first reflects task engagement on a local scale (“trial history”: defined as the decisions
and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale (“satiation”: slow
dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions
during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the
same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to
trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go
decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus,
is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.
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Introduction
Primary sensory or “first order” thalamus is thought to be driven
mainly by sensory input arriving from an ascending sensory pathway
and terminating in the primary sensory cortex (Sherman and Guil-

lery, 1998). However, human pathology (Van der Werf et al.,
2000; Schmahmann, 2003) and experimental data (Steriade and
Llinás, 1988; Saalmann and Kastner, 2011) have provided accu-
mulating evidence that the thalamus, including first-order nuclei,
assumes a role in processing behavioral states like sleep and wakeful-
ness as well as higher cognitive functions. Among extra-sensory sig-
nals, movement-related information (Lee and Malpeli, 1998; Reppas
etal., 2002;Leeetal., 2008)aswell asattentionalprocesses (O’Connoret
al., 2002; McAlonan et al., 2008; Halassa et al., 2014) have been shown
to be reflected in thalamic spiking. Choice-related activity, an-
other cognitive signal, has long been assumed to be largely con-
fined to neocortical circuits (Nienborg and Cumming, 2006;
Gold and Shadlen, 2007). However, massive recurrent connectiv-
ity of cortical areas, not only to thalamus but basically to all
stations on ascending sensory pathways (Smith et al., 2015),
keeps open the possibility that cognitive influence of sensory
signal streams can be revealed using either more elaborate behav-
ioral assessment and/or better tools to study neuronal coding.
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Significance Statement

It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal
stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already
be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed
very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session)
are reflected.
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This notion has been strengthened by a recent report demonstrat-
ing choice-related modification of stimulus-evoked response in the
medial ventroposterior (VPm) thalamus, the tactile first-order
stimulus of the whisker-related tactile system in rodents (Yang
et al., 2016).

Previous studies of choice-related inputs have focused on the
question of whether choice-related signals in sensory processing
streams are a product of noise fluctuations large enough to be
signaled in a bottom-up fashion and gain perceptual significance
(Britten et al., 1996), or whether there exist cognitive signals that
stream backward, from cognitive centers like the prefrontal and
parietal association cortices to the more specialized sensory pro-
cessing structures (Nienborg and Cumming, 2009). To date, con-
sideration of choice related influences has been limited to a single
behavioral trial. However, we suggest that if top-down cognitive
signaling exists, it must also reflect the longer time scales that are
generally encompassed by cognitive signals. This idea is further
supported by the fact that choice is strongly associated with value
and reward, variables that are profoundly involved in learning and
memory as well as in moment-to-moment decision making, and
certainly recruit memories about behavioral events distributed in
extended periods of past time (Herrnstein, 1961; Schultz, 2006).
In fact, on the behavioral level there is good evidence that past
choices can affect current ones (Corrado et al., 2005; Busse et al.,
2011; Stüttgen et al., 2013; Fründ et al., 2014). Such signals have
been shown to modify sensorimotor signals in parietal cortex
(Sugrue et al., 2005). However, how these cognitive signals inter-
act with subcortical structures remains unclear.

Our aim for the present study was therefore to investigate
whether modulatory signals related to past choices and rewards
affect encoding subcortically in a first-order thalamic nucleus.
Specifically, we examined the impact of prior choices and out-
comes on spiking in the rat VPm nucleus, which is the first-order
thalamic nucleus in the tactile system that selectively encodes
kinematic features of whisker vibrations (Petersen et al., 2008)
and projects to primary somatosensory cortex. We used a simple
tactile detection task in head-fixed rats that combines punctate
whisker-ramp stimuli with ongoing white noise whisker stimula-
tion (Waiblinger et al., 2015b) to enable investigation of neuronal
coding properties (i.e., reverse correlation) throughout the full
task epoch. We analyzed thalamic neural activity with respect to
simple task-related variables on two time scales: the short time
scale of choices/rewards from one trial to another (local scale)
and the longer periods of task engagement (global scale). Behav-
ioral modeling revealed correlations on the animal’s choices and
rewards on a local (a few trials) as well as global scale (a session),
while thalamic spiking was significantly related only to local trial
history.

Materials and Methods
Animals, surgery, and general procedures for behavioral testing. All exper-
imental and surgical procedures were performed in accordance with
standards of the Society of Neuroscience and the German Law for the
Protection of Animals. Subjects were three female Sprague-Dawley rats
(Charles River Laboratories), aged 12–16 weeks at the time of implanta-
tion. The basic procedures of headcap surgery, habituation for head-
fixation, and behavioral training exactly followed the ones published in a
technical review (Schwarz et al., 2010) and a more recent psychophysical
study (Waiblinger et al., 2015b). In the following text, only procedures
pertaining to the specific paradigm established here are described in
detail.

Oral antibiotics (Baytril, Bayer HealthCare; 2.5% in 100 ml drinking
water) were provided for 3 d before surgery and 1 week postoperatively.
The animals were anesthetized using ketamine and xylazine (100 and 15

mg/kg body weight, respectively) and chronic electrode arrays (Haiss et
al., 2010) were implanted. A craniotomy was performed (2– 4 mm caudal
to bregma, 1.5–3.5 mm lateral to the midline) to permit access to the right
VPm nucleus of thalamus. Barreloids were identified through functional
mapping of the VPm using a single extracellular microelectrode. Unit
and field potential responses to a brief manual whisker flick were moni-
tored until a site maximally responsive to deflections of a single whisker
with lower activation of adjacent whiskers was found. Across the three
animals, units in �, A1, A2, C1, C2, D1, and D2 barreloids were recorded.
Movable multielectrode arrays (2 � 2 configuration; electrode distance,
250 –375 �m) were centered over the mapped location and slowly in-
serted through the dura at a speed of 1.25 �m/s �1 until all electrodes had
reached the VPm (usually at a depth of �4000 –5000 �m). The electrodes
were then slowly retracted to a depth of �3500 – 4000 �m relative to the
cortical surface and fixed to the skullcap with dental cement so that the
mobility of the array was still guaranteed. The wound was treated with
antibiotic ointment and sutured. Analgesia and warmth were provided
after surgery. Rats were allowed to recover for at least 10 d before habit-
uation training. Subjects were housed together with a maximum number
of four in one group cage and kept under a 12 h inverted light/dark cycle.
During behavioral testing, water intake was restricted to the apparatus
where animals were given the opportunity to earn water to satiety. Test-
ing was paused and water was available ad libitum during 2 d per week.
Bodyweight was monitored daily, and was typically observed to increase
during training. No animal in this study needed supplementary water
delivery outside training sessions to keep its weight. The first step of
behavioral training was systematic habituation to head-fixation lasting
for �2 weeks. Once rats were trained on the behavioral task, 1–2 exper-
iments were usually conducted per day comprising 100, 150, or 200 trials.
During behavioral testing a constant auditory white background noise
(70 dB) was produced by an arbitrary waveform generator (W&R Sys-
tems) to mask any sound emission of the galvo-motor-based whisker
actuator.

Whisker stimulation. For whisker stimulation a galvo-motor (galva-
nometer optical scanner model 6210H, Cambridge Technology) as
described by Chagas et al. (2013) was used. The stimulator contacted a
single whisker on the left side of the rats face at 5 mm (�1 mm tolerance)
distance from the skin, and thus, directly engaged the proximal whisker
shaft, largely overriding bioelastic whisker properties. The rotating arm
of the galvo-motor was arranged such that the mean whisker position
during noise stimulation was its resting point. During the main experi-
ment that included the behavioral task, stimulation was always delivered
along the rostrocaudal axis.

Voltage commands for the actuator were programmed in MATLAB
and Simulink (v2015b, MathWorks). The whisker was deflected by un-
frozen Gaussian white noise (sampling rate 20 kHz) that was low-pass
filtered using a Butterworth filter (fifth order) with a cutoff frequency of
100 Hz (Chagas et al., 2013). As ascertained in a separate study (Waib-
linger et al., 2015b), the amplitude of the noise stimulus (An � 1°, Vn �
350°/s; as determined by An � 2 � SD of the distribution) applied here,
is in the perceptible range of the animals. The noise stimulus was pre-
sented continuously throughout the session. A stimulus consisted in a
single event, a sinusoidal ramp embedded into the ongoing noise (the
ramp shape was half period of a 100 Hz sine wave, starting at 1 minimum
and ending at the next maximum). The ramp amplitudes used [A � (0, 3,
6, 9, 12)°, or maximal velocities, respectively: V � (0, 942, 1884, 2827,
3769)°/s] were well within the range reported for frictional slips observed
in natural whisker movement (Ritt et al., 2008; Wolfe et al., 2008). The
embedded ramp was followed by a slow decay back to the resting position
during the following 1 s epoch. This slow movement is known to be
imperceptible (Stüttgen et al., 2006). To assure a smooth embedding of
the ramps, the noise was silenced (multiplied) with an inverted Gaussian
(SD � 10 ms; minimum at the peak is 0, approaching 1 at � infinity)
centered at the time of the ramp’s maximum velocity. As a result, the fast
transition was smooth and largely noise free.

Experimental paradigm. Before data collection began, all three rats
were trained on a Go-NoGo “detection of change” psychophysical task
using the same protocol as described before (Waiblinger et al., 2015a,b;
Fig. 1A). In this task, the whisker is continuously vibrated (e.g., with
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background noise, S�). At intervals of 4 –10 s
(flat probability distribution) the detection tar-
get (S�) was presented, which in the present
case was a single ramp. A trial was categorized
as a “Go” response or a “hit” if the animal gen-
erated the indicator response, a lick at a water
spout within 1000 ms of the onset of the S�
(ramp stimulus). If no lick was emitted
(“NoGo” response) the trial counted as a
“miss”. Throughout the report and the figures,
we use the symbols h and m as short for hit and
miss trials, respectively. Premature licking in a
2 s period before the stimulus was mildly pun-
ished by resetting time and starting a new in-
tertrial interval of a 4 –10 s duration drawn at
random from a flat probability distribution.
This measure effectively suppressed licking
and associated whisker movements.

During initial training of the task, all rats
learned to detect deflections in caudal direc-
tion. In the first sessions after concluding the
training, the animal’s psychometric curve (Fig.
1C) using the method of constant stimuli was
measured, which implied the presentation of
all stimuli including catch trials. The sequence
of stimuli was pseudorandom, i.e., consisted in
repeated blocks of stimuli, each containing all
stimuli once in shuffled order. Responding to
non-tactile cues was checked by sessions with
actuators in place and moving, but detached
and out of reach of the whiskers. All rats failed
to detect the stimuli in these sessions.

For the main behavioral and electrophysio-
logical experiment, a single ramp stimulus was
chosen from the suprathreshold sloped por-
tion of the psychometric curve to assure that it
is perceptible but engages the rats’ tactile sys-
tem without driving it into saturation (Af � 6°
or 9°, Vf � 1884 or 2827°/s). As described in the
section whisker stimulation, this feature was
embedded into the noise either in caudal or
rostral direction.

Generalized linear models. To model future behavioral and spike re-
sponses based on past behavioral responses, we used generalized linear
models (GLMs), a class of models that is fit to map several independent
variables to one predicted variable using a sequence of a linear regression
and a monotonic (nonlinear) response function (McCullagh and Nelder,
1989). After fitting to the data, the models were used in two principal
ways, as “predictive” and “generative” models: the first calculates a
prediction based on the animals behavioral performance (Busse et al.,
2011). The second validates the model by generating de novo responses
based on the model’s own trial history (Corrado et al., 2005; Stüttgen et
al., 2013).

The linear regression incorporated three independent variables de-
scribing the predisposition of the animal (and its neurons) to respond in
the next trial. The first is a constant term (weight b0) describing general
biases including the tendency of the animal to respond to the constant
stimulus (ignoring the switch in direction at the middle of a session, see
data analysis). The second term (weight bS) describes a global trend of
slow reduction of response probability during the run time of a session.
This tendency is driven mainly by the increasing satiation of the animal
and finally leads to task withdrawal when full satiation is reached. It is
modeled by the sum of past rewards gained (in that session) normalized
to the total number of session trials. The third term represents local trial
history, encompassing only the decisions (and rewards) of the last three trials
(weight bH). The triplet of history trials is interpreted as a binary number
(mmm � 0, hmm � 1, . . ., hhh � 7) giving the most remote trial the
weight of 1, the middle trial a weight of 2, and the current trial a weight of
4. The full regression equation, thus, had the following form:

z �tn	 � b0 � bS��i�0

i�n
xtn�i�x

�
� bH � � xtn�2

� 2xtn�1
� 4xtn

	/7, (1)

with [t3, t4, . . . tn�1, tn], indexing the series of behavioral outcomes (x �
0 if m, and x � 1 if h) in the current (tn) and past trials (tn�v with
� � [1, 2]). The prediction z(tn) for the current trial is converted into the
output of the GLM (�) by a monotonic response function m of the form
��m(z). For behavioral decisions, we assumed a Bernoulli distribution
of binary Go/NoGo responses and used the logistic function as the re-
sponse function (i.e., the GLM became a logistic regression):

�GO �
1

1 � e�z, (2)

the output of which can be interpreted as the probability of a Go response
depending on the decision quantity z, favoring Go decisions when posi-
tive and NoGo decisions when negative. For spike counts we assumed the
Poisson distribution and used the following response function:

�SPK � ez. (3)

The spike count prediction �SPK was then the input for a second GLM
using the regression equation

z2�tn	 � b0,S � bSPK �SPK, (4)

with bias term b0,S The prediction z2(tn) in turn was plucked into the
logistic response function (Eq. 2), which estimated the probability of the

Figure 1. Behavioral and electrophysiological methods. A, Go-NoGo detection of change task in head-fixed rats. The sensory
stimulus consisted of a ramp-shaped whisker deflection labeled “ramp” (S�; 5 ms duration) followed by an imperceptible slow
decay of 995 ms duration) embedded in noise (S�; Gaussian white noise). The noise was silenced by multiplication with an
inverted Gaussian centered at the ramps maximum velocity. Shown is a hit trial (h), in which the rat licked within the window of
opportunity (dark gray). Absence of licking and reward would be called a miss trial (m). B, Properties of the noise stimulus
presented throughout the recording sessions except when presenting fixed amplitude ramps (compare with A). The large graph
presents the power spectrum with cutoff frequency (100 Hz; broken line). The inset shows measured position distribution (points)
and Gaussian fits (lines; r 2 �0.99). Both plots contain two lines overlain which represent stimulus composition before hit and miss
trials. These lines are identical as reflected by their indiscernibility. C, Preliminary experiments measured psychometric curves.
Shown are examples obtained from single sessions separated for each rat. Data points correspond to measured hit rates for
different stimulus amplitudes, the lines are logistic fits. Vertical arrows indicate perceptual thresholds. Horizontal lines are the 95%
confidence intervals of the thresholds. D, Right, Unit recording was done in the VPm thalamus barreloid associated with the
stimulated whisker. Center, Single-unit spike waveforms. Left (top to bottom), Example stimulus trace, raster, and PSTH of the unit
shown in the center.
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binary decisions based on the predicted spikes. A graphical representa-
tion of the models is given in Figures 2B and 6C.

The GLMs were either fitted using all three linear terms (“full” model)
or with a subset of them (“reduced” or “nested” models), using glmfit.m
(MATLAB v2015b, MathWorks). This function also returns the model’s
deviance from a saturated model (the one with maximal number of
parameters). Nested models were compared using the deviance test,
which estimates the significance of model improvement as follows:

p � 1 � chi2cdf �D1 � D2,V	, (5)

where p is the significance value, chi2cdf is the cumulative � 2 distribution.
D2 is the deviance of the extended model and D1 the deviance of the

reduced model, V is the degrees of freedom calculated as number of
terms set to 0 in the reduced model.

The model’s prediction in one session was determined by sorting the
trials and respective probabilities p (calculated using Eqs. 1 and 2) ac-
cording to Go and NoGo responses. Accuracy a of the model to match the
responses of the animal was then obtained as follows:

a �
�i

pi � �j

�1 � pj	

i � j
, (6)

where i and j are numbers of Go and NoGo trials, respectively. To validate
the fitted models, generative runs were performed. To do that the first

Figure 2. Behavioral modeling. A, Rats’ choices. Thirty-two sessions containing 100, 150, and 200 trials are shown (black, hit; white, miss). The sessions are ordered according to number of
changeovers. On the right the rat ID indicates: rat 1, black; rat 2, gray; rat 3, white. B, Schematic illustration of the behavioral model, a class of GLMs. The animal’s choice (Go or NoGo) is modeled as
a weighted sum of three regressors; the response to a constant stimulus (bias term b0), the three decisions taken in the past three trials (bH) and the satiation bS (see Materials and Methods; Eq. 1).The
resulting variable z is passed through a logistic function that yields a probability for Go responses (�Go; Eq. 2). Trial-by-trial choices are simulated by randomly drawing from a Bernoulli distribution
with probability �Go. This step corresponds to flipping a coin, with �Go being the fairness of the coin. Adapted and modified from Busse et al. (2011). C, Model prediction. The output of Equation 2
(�Go) is shown using a gray scale from 0 (white) to 1 (black). Three nested models are shown. The full model (left) incorporates bias, satiation and three trial history terms (Eq. 1), a first reduced model
lacks trial history terms (middle), and a further reduced model contains exclusively the bias term (right). The bars on the right show the goodness of fit, reflected by the GLM’s deviance. All pairwise
deviances are significantly different ( p 
 0.01, deviance test; Eq. 5). D, Simulation. The nested models (same as in C) were used to simulate sessions based on their own generated decision series
(the only input of the rat data here is the fitting procedure to obtain the model and the first three trials in a session to initiate the simulation). The simulation of number of changeovers, a parameter
not explicitly used to fit the model, was poorly recreated by the bias model but increasingly better by the second reduced and full models (rat data and bootstrapped 95% prediction intervals of model
performance are shown).
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three trials were set identical to the ones obtained from the rats. All
remaining trials were then filled by the model generating its own satiation
curve and trial history. This was done 1000 times for each session. From
the generated decision series we extracted the number of hits as well as
the number of changeovers generated during the session and compared it
with the performance of the rat in the session that was used to fit the
model.

Electrophysiology. The movable multielectrode arrays used here are
described by Haiss et al. (2010). Extracellular voltage traces recorded by
the electrodes were bandpass filtered (200 –5000 Hz) and recorded at a
sampling frequency of 20 kHz using a multichannel extracellular ampli-
fier (Multi Channel Systems). Spike sorting was achieved by a custom
written software package in the MATLAB environment. Briefly, a simple
amplitude threshold was applied to the raw voltage trace. Depending on
whether the threshold was positive or negative, local maxima (peaks) or
minima (troughs) that exceeded this threshold were identified. A 1.1 ms
window was then applied around each of these peaks or troughs (300 �s
before and 800 �s after) to extract putative neural event waveforms. All
such neural event waveforms were subjected to a principal component
analysis and the first three principal components were used to generate
scatter plots. Single units (SU) were then manually defined by selecting
clusters of neural events that were clearly separated from the noise cluster
in PC space. This was done in a time resolved fashion across the entire
recording. Multiunit (MU) activity was conservatively defined by wave-
forms that exceeded the amplitude threshold but could not be separated
from the noise cluster in PC space. On one electrode typically one, max-
imally two units were recorded. Timestamps and waveforms of units
were saved and used for later analysis (see example recording in Fig. 1D).

Data analysis. Psychophysical data were assessed as response-proba-
bilities from single sessions for each animal (100 –200 trials). The psy-
chometric curves in this study are logistic fits estimated from a maximum
likelihood estimator (Wichmann and Hill, 2001a,b). The same toolbox
was used to evaluate the goodness of fit and obtaining confidence inter-
vals for perceptual thresholds and slopes.

It is important to note that all spiking recorded in this study was
evoked, either by white noise or ramp-like whisker deflection. We there-
fore refer to “noise-driven” versus “ramp-driven” spiking throughout
the text. For large parts of the study, we focused on noise-driven spiking
in an interval of 2 s before ramp onset; data shown in Figures 1D, 3A, 4,
and 5C,D, contain ramp-evoked spiking. The 2 s prestimulus period was,
by design, free of licks (as licks occurring 2 s before scheduled ramps led
to punitive time outs; see experimental paradigm). To identify and re-
move spike trains eventually contaminated by whisking expressed as �10
Hz rhythmic spiking activity (Moore et al., 2015; Urbain et al., 2015), we
calculated the autocorrelation function on the multiunit spike time-
stamps in a 1 s window before feature presentation on a trial by trial basis.
The autocorrelograms were scaled as correlation coefficients, i.e., by def-
inition the zero-lag bin held a value of 1. Suspected whisking trials were
classified using thresholds on metrics of autocorrelogram periodicity, the
amplitude modulation of the periodicity (the mean peak-to-peak ampli-
tude of the oscillations), and the correlation to a 10 Hz sine wave to
mimic a relevant whisking frequency. The classification algorithm was
validated across simultaneously recorded multiunit recordings to mini-
mize mismatches in the classification of suspected whisking activity on
any given simultaneously recorded trial (96.6% performance). Spikes
and stimuli contained in suspected whisking trials were not used for
analysis of neuronal coding.

To investigate neuronal activity as a function of task performance, we
separated trials according to the animals’ behavioral choice (single trial: h
and m trials) and choice history [doublet-trial sequences: monitoring
decisions and outcomes in one past trial (hh, mh, hm, mm) or triplet-trial
sequences: monitoring decisions in the two most recent trials (hhh, mhh,
hmh, mmh, hhm, mhm, hmm, mmm)]. We ruled out a systematic differ-
ence of noise stimuli between the trial classes by fitting a Gaussian to the
amplitude distribution. The goodness of fits was r 2 � 0.99 for all cases.

We used receiver operating characteristic analysis to calculate the area
under the curve (AUC), a nonparametric effect size to quantify the dif-
ference of neuronal activity under different experimental conditions
(Britten et al., 1992). AUC is the probability of correct classification of a

binary classifier (using varying thresholds to strip off the observer bias)
confronted with the Gaussian noise stimulus in two experimental condi-
tions (Green and Swets, 1966). For this purpose a window in which spikes
were counted was moved in 1 ms steps across spike trains obtained in
different contexts (e.g., before h vs m trials). The window was 50 ms long
for prestimulus spiking (see Fig. 4A) and 5 ms for stimulus-evoked spik-
ing (see Fig. 4B). A prediction interval of the population response was
assessed by a resampling technique. Random picks from observed spike
counts (across trials) were performed for each window and the AUC
values across time were calculated 1000 times. The 2.5 and 97.5 percentile
of this boot-strapped ensemble of AUC values across trial time served as
prediction limits (see Fig. 4B).

To test whether spike patterning changes with different contexts we
calculated several measures from the spike trains observed in the interval
2 s before S� onset (see Fig. 7). First, the Fano factor of spike counts:

F �
	c

2

�c
, (7)

was assessed, followed by coefficient of variation of inter spike intervals:

CV �
	i

�i
, (8)

where �c, �i, 	c, 	i are mean and SD of spike counts and interspike
intervals, respectively. Normalized (scaled in correlation coefficients)
and spike rate-corrected autocorrelograms averaged across units for each
class of trials were computed from binary vectors (time bin 1 ms) that
held zeros for no spike and ones for spikes. The effect of spike rate on
correlation was corrected for by subtracting the mean of 1000 resampled
autocorrelograms based on permutated input vectors. The observed and
resampled autocorrelograms were all corrected for border artifacts using
a triangular function as done by Kohn and Smith (2005, their Eq. 5).

Stimulus-dependent response plasticity was studied by dividing the
recording session into two equal parts where the first half typically con-
tained between 50 and 100 consecutive trials with target features (ramps)
of one direction (e.g., caudal) and exactly the same amount of trials in the
second half with embedded features of the opposite direction (e.g., ros-
tral). The order of directions was reversed after each recording session
(i.e., if caudal was first in Session 1, rostral was first in Session 2, etc.).
Subjects were rewarded for detecting every deflection that exceeded the
noise independent of its direction.

Coding properties of VPm neurons were extracted from spike-
triggered stimulus ensembles as done before for primary afferents
(Chagas et al., 2013). The Gaussian stimulus was differentiated to yield
Gaussian distributions of position ( pos), velocity (vel ), and acceleration
(acc). For each recorded VPm unit, three-dimensional spike-triggered
distributions (pos,vel,acc) at a single fixed delay were constructed. An
example of such a spike-triggered ensemble is shown in Figure 3B. The
time between spike and sampled kinematic triple was varied between 0
and 20 ms (in steps of 1 ms) and the optimal delay was determined by
maximizing the information that can be gained about the stimulus by
observing or not observing a spike. This information is given by the
Kullback–Leibler divergence D (in bits) calculated as follows:

D� p� x�s � 1	 p� x		 � �
x

p� x�s � 1	 log2

p� x�s � 1	

p� x	
, (9)

where x is the instantaneous stimulus ensemble at one delay, s the binary
value signifying the presence/absence of a spike, and p a probability dis-
tribution (Chagas et al., 2013).

The mean preferred stimulus was calculated as the mean of the vectors
pointing to the kinematic triple ( pos, vel, acc) obtained with each spike
using the optimal latency. The length of the mean vector gave an estimate
on how much the preferred stimulus differed from the stimulus mean
[which by design was (0, 0, 0); Fig. 3D]. Changes in preferred stimulus
were tracked by calculating the difference vectors for preferred stimuli
obtained in the trials with caudal versus rostral ramps (Fig. 3C).

Overview of experiment designs and statistics used in the study. The fit of
behavioral models was assessed using the deviance measure. Statistical

4874 • J. Neurosci., May 23, 2018 • 38(21):4870 – 4885 Waiblinger et al. • Cognitive Signals in VPm



Figure 3. Sensory coding. A, A few example ramp stimuli (red) overlain to caudal (left) and rostral direction (right). Peristimulus firing rate of a single-unit spike train calculated from 50 such ramp
stimulations (black). B, Example of spike-triggered stimulus ensembles constructed from noise-driven responses within a 2 s interval preceding the ramp. Data from one single unit (caudal stimulus
direction was presented in the first half of the session, and rostral direction in the second). The three-dimensional distribution is broken down in projections to stimulus position versus velocity space
(left), and stimulus acceleration versus velocity space (right). Circles represent 1 � SD and 2 � SD of the Gaussian white noise stimulus. Colors represent spike counts (total spikes in the first half
of the session: n � 2439; second half: n � 2218). Axes limits are position (pos): �1°; velocity (vel): �331°/ms; acceleration (acc): �152,182°/ms 2. C, Difference vectors calculated from the
centroids of spike-triggered stimuli obtained in the two halves of the session (total sample n � 50 units; blue, caudal first; red, rostral first). The mean vectors obtained with the two sequences of
ramp-directions are depicted in thick lines and arrowheads. Note that the mean vectors are non-zero and point to similar sites. This indicates that coding systematically changes between first and
second half of the session, but in a stimulus independent fashion. D, Lengths of mean vectors (centroids) of all 50 units observed in the first versus the second half (Figure legend continues.)
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significance was estimated using the deviance test as described under
generalized linear models (Fig. 2C). The sign rank test was used to test
differences found with mean vectors and information rates in spike-
triggered stimulus ensembles (paired samples: n � 50 spike trains, �
error level 0.01; Fig. 3 D, E). Differences in spike rate depending on trial
history was expressed as AUC (see data analysis). The significance was
estimated by comparing the 95% prediction interval assessed AUCs ob-
tained from n � 50 spike trains against random performance (AUC �
0.5; Fig. 4).

Results
We trained three head-fixed rats using a tactile detection-of-
change paradigm (Waiblinger et al., 2015a; Fig. 1A). The task was
to detect ramp-like deflections of a single whisker embedded in
low-pass filtered Gaussian white noise (edge frequency 100 Hz;
2 � SD � 1°; Fig. 1B). In this simple behavioral paradigm, the
animals’ decisions and outcomes are conflated, as a Go decision
would always result in obtaining a reward (h) and a NoGo deci-
sion would result in not obtaining a reward (m). We therefore
interchangeably use Go/NoGo designations for the animals’ de-
cisions and outcome designations h versus m to label trials in the
remainder of the text. By the same token, decision and reward
history cannot be disentangled; to acknowledge this we will use
the neutral term “trial history”.

The amplitude used for the background noise stimulus is
known to readily engage the tactile system and to be detectable by
rats (Waiblinger et al., 2015b). Thus, the background noise (and
the neuronal responses it evoked) could be used to probe the
neuronal coding of VPm neurons at any point during the behav-
ioral session. Introducing changes to the stimuli, we were able to
determine whether changes in coding properties were of sensory
or nonsensory nature. The characteristics of the ramp-like deflec-
tion were determined in a preliminary experiment, conducted
with every rat, in which psychometric detection curves were mea-
sured presenting one catch and four different stimulus ampli-
tudes [A � (0, 3, 6, 9, 12)°, V � (0, 942, 1884, 2827, 3769)°/s] in
pseudorandom fashion. The resulting psychometric curve for
each individual rat (Fig. 1C) was used to select a near threshold
stimulus, which was going to be presented in the subsequent main
experiments. This procedure ascertained first, that the stimuli would
be just perceptible, thus calling for the animal’s attention to perform
well on the task. Second, saturation of ramp-evoked neuronal re-
sponses was avoided, keeping them in a physiological working range.
The threshold position and velocity amplitudes obtained for the
three rats were A � (5.8 6.0 6.2)°, and V � (1824, 1884, 1947)°/s.
The stimulus parameters selected for the main experiment were
A � 6° (V � 1884 °/s) for the first two rats and A � 9° (V � 2827 °/s)
for the third (accounting for this rats’ overall decreased perfor-
mance). It is noteworthy that these threshold amplitudes, mea-
sured with stimuli embedded in noise, would be considered
suprathreshold in a noise-free environment (Stüttgen et al.,
2006). These increased thresholds confirm the notion that detec-
tion performance is diminished by preadaptation (Ollerenshaw
et al., 2014). The main body of data presented here was ob-
tained in 32 behavioral sessions across three rats (rat1/2/3:
22/3/7 sessions), in which we presented the near-threshold

ramps and simultaneously recorded from VPm barreloid sin-
gle and multiunits (rat 1/2/3, 37/4/9 units; Fig. 1D).

Determinants of decision series within one session
Behavioral sessions were of three predetermined lengths, either
100, 150, or 200 trials long. Figure 2A shows the raw behavioral
data obtained from three rats. Trials in which the animal success-
fully detected the stimulus (hits) are marked in black and those in
which no indicator lick occurred after stimulus presentation
(misses) are marked in white. As stimulus amplitude was chosen
close to perceptual threshold, the task was nontrivial for the rat,
reflected by the low response rate (hit trials divided by total num-
ber of trials); on average 0.53 (SD 0.14). Interestingly, although
generating a near-threshold average response probability, this
particular arrangement prompted considerable variation in over-
all response patterns from all three animals, which can be ex-
pressed as the “changeover rate”, i.e., the number of trial-to-trial
changes (either from hit to miss or reverse) divided by the total
number of trials. Across all sessions the rats showed a mean
changeover rate of 0.27 (SD 0.10). Figure 2A sorts all sessions in
the sample from lowest changeover rate of 6% to the highest of
50% (these extreme rates translate to one observed change within
as many as 17 trials, down to every second trial on average). Some
sessions basically consisted in of what could be called an “en-
gaged” and a “lazy” period (Fig. 2A, Session 1), whereas others
were characterized by more constant engagement with hit and
miss trials thoroughly interspersed (Fig. 2A, Session 32).

Before trying to elaborate whether primary sensory thalamus
codes for these nonsensory behavioral aspects, we wanted to
quantitatively and qualitatively capture the response pattern of
the animals by systematically comparing nested generative be-
havioral models on the basis of logistic regressions (Corrado et
al., 2005; Busse et al., 2011). As detailed in the methods section,
the regression equation of the full model included three terms
(Eq. 1; Fig. 2B): the first term (b0) was a “bias” term that repre-
sented the presence of the stimulus and other nonvarying biases
the animal may have had. “Satiation”, the second term (weight
bS), was calculated as the cumulative sum of the reward series.
Satiation may actually represent several correlated variables (e.g.,
satiation, motivation, general attention, vigilance, etc.) that we
simply subsume in this report under the label of satiation for ease
of communicating. The main point in this study was not to dif-
ferentiate between these possible variables, but to define a non-
sensory variable that varies “globally”, across the time scale of a
session. In this sense, the group designation of satiation seems
reasonable as it is the kind of process that is related closest to the
sequence of decisions because every hit trial, with another drop of
water consumed, will directly increase its value. The third regres-
sor, called trial history (weight bH) is extracted as well from the
sequence of decisions, but is very different from satiation with
respect to its reference point and dynamic time scale: differing
from satiation, trial history is very local, in our current definition
consisting exclusively in triplet of trial outcomes representing the
current and two preceding trials (t, t�1, t�2, with t being the
current trial). As regressors bS and bH were both extracted from
the decision series, they showed an overall positive correlation
(correlation coefficient r � 0.4), but, nevertheless, varied greatly
from session to session (�0.41 
 r 
 0.75). The distribution of
the correlation of the three history terms with satiation was al-
most identical, indicating that the correlation (if it existed) was
due to longer strips of nonchanging behavior, presumably at the
beginning (predominance of hits) and at the end of the session
(predominance of misses). As will be seen despite the correlation

4

(Figure legend continued.) of the session. E, Instantaneous information rate of all 50 units (D, E;
red, SU; black, MU). Both measures, median length of mean vector and information rates in 50
units slightly but significantly decrease in the second half [length of sum vector in arbitrary
units: (median � IQR) first half: 1.8 � 3.6; second half: 0.9 � 2.9; sign rank test, p � 1e�05;
information rate in bits/s: (mean � SD) first half: 2.29 � 0.43; second half: 2.24 � 0.47; sign
rank test, p � 0.006].
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in some sessions, inclusion of the local term bH improved the
performance of the behavioral model quantitatively and qualita-
tively over those only containing the global variable.

After fitting the models, we used them in two different modes
to generate model decisions (Corrado et al., 2005). The first mode
is called predictive. Predictive models use regressors that are cal-
culated from the sequence of previous decisions observed in the
rat experiment (Fig. 2C). The second mode is called generative.
Generative models take the rat data out of the loop; except from
the very first three trials to initialize the process. From there on
the model generates its output based solely on the model-
generated previous sequence of decisions (Fig. 2D). Importantly,
the generative modeling was aimed at explaining the observed
variety of changeover rates, a property not contained explicitly
among the regressors of the model.

Figure 2C displays the predictive performance of the full and
two reduced models: the first reduced model was devoid of con-
tributions from recent decisions (bias and satiation), i.e., it lacked
the bH term), whereas the second reduced model additionally
eliminated the satiation term bS from the equation (bias). Com-
paring each model pairwise with the next extended one, we found
that each extension of the model significantly improved the fit
[deviances: Dbias � 196; Dbias & satiation � 158, Dfull � 136; devi-
ance tests (Eq. 5): Dfull vs Dbias/satiation and Dbias & satiation vs Dbias,
both p 

 0.01; Fig. 2C). As expected, all models predicted hit
rates very well; the overall hit rate was in all cases included in the
95% prediction intervals estimated from 1000 model runs. It is
clear however, that the response patterns were not recovered by
the reduced models. The “bias model” generated fast changing
response trains, which throughout all 32 sessions generated large
numbers of changeovers (this result on first glance might feel
counter-intuitive as the predictions shown in C look rather con-
stant within individual sessions; however, drawing from bino-
mial distributions with probabilities close to 0.5 will generate
quite some random fluctuations in the binary outcomes). Also
the typical decay of responding seen in the end of the sessions
due to satiation was not recovered. Adding satiation to the list of
regressors the “bias and satiation model” reflected the response
decays but failed to represent the exact temporal position of finely
resolved response patterns. Only the full model, including the
trial history terms, was able to fully recover these fine grained
response patterns. This gradient in the quality of model perfor-
mances is captured by the median accuracy (Eq. 6) of prediction
obtained with each model [bias: median accuracy � 0.52 (the
95% prediction interval straddled random accuracy of 0.5 in 21 of
32 sessions): bias and saturation: median accuracy � 0.64 (10 of
32 prediction intervals straddled random performance); full: me-
dian accuracy � 0.69 (3 of 32 prediction intervals straddled ran-
dom performance)]. In summary, these results support the idea
that response patterns on the scale of the session are predicted, as
expected, by satiation of the animal, although more local pattern-
ing on the level of a few trials is predicted by trial history. To
arrive at an estimate of the impact of past trials on the actual
decision, we additionally formulated a model with separate terms
for each trial in the triplet of recent trials. Therefore this model
had five terms, in addition to the bias and satiation weights b0, bS,
we fitted the weights b1, b2, b3 for each recent trial in the triplet
(deviance � 126; data not shown). The distribution of coefficients
fitted for the three history terms across sessions revealed that the
most proximate one (b1) robustly attained positive coefficients
[median/interquartile range (IQR): 0.91/1.00], the second (b2)
was already considerably less effective (0.30/0.67), and the effect
of the most distant one b3 was small. In fact, the distribution of b3

was wide, consistently encompassing zero (no effect; 0.17/0.95).
We, therefore, conclude that trial history affecting behavior is
rather short lived and does not extend beyond 2–3 trials.

Finally, we wished to validate the modeling predictions by
having the model simulate the animals’ performance using its
own model-generated decision series (Corrado et al., 2005). We
asked whether an aspect of the decision series, the number of
changeovers, that was not explicitly used to fit the models could
be recreated as well. As expected already from the prediction results,
the bias model was not able to correctly recreate the changeover
rate produced by the rats (Fig. 2D, right; observed changeover
rates fell outside the 95% prediction interval generated by 1000
model runs in 25 of 32 sessions). The extended model bias and
satiation did substantially better (Fig. 2D, middle; failing in 10 of
32 sessions). By far the best performance, however, was achieved
by the full model incorporating also the trial history; it did not fail
in any of the 32 sessions to match the performance of the rats (Fig.
2D, left).

In summary, our behavioral modeling showed that general-
ized logistic models can capture a significant portion of the rat
behavioral variability based on the nonsensory variables satiation
and trial history. Of particular interest for the remainder of this
study is the fact that adding the local trial history term to the
equation, significantly improved the model fit, the model’s pre-
diction, and the generative recreation of the number of change-
overs, a variable not explicitly used to fit the models. We will
show in the following sections that only one of the two nonsen-
sory variables, trial history, is represented as well by VPm spike
rate and patterns.

Determinants of VPm spiking
We recorded a total of 42 multiunits and 8 single units within the
�, A1, A2, C1, C2, D1, and D2 barreloids associated with the
stimulated whisker during detection behavior. By gradually mov-
ing the electrodes, units were found between 4000 and 5000 �m
in depth, consistent with anatomical records of VPm location
(Paxinos and Watson, 2007), and confirmed later by histological
examination of electrode tracks and electrical lesions. VPm unit
responses to ramp deflections of a single whisker approximately
matched the ones reported by previous studies investigating
anesthetized rats (Petersen et al., 2008). The neural response con-
sisted of a short elevation of firing rates at a latency of 6.1 � 1.2
ms (mean � SD) with a duration of �20 ms (Fig. 3A). In a subset
of units, we tested the responses to the ramp stimulus without
embedding it in white noise and found that background whisker
noise stimulus reduced both noise-driven and ramp-driven re-
sponses considerably (spontaneous background vs noise-driven:
AUC 0.41; ramp evoked with noise stimulation vs ramp evoked
without noise stimulation: AUC � 0.38; 7 SU and 21 MU) as ex-
pected from preadaptation of VPm units (Whitmire et al., 2016).

In addition to traditional sensory stimulus representation,
here we aim to demonstrate nonsensory input representation in
the VPm. Therefore, we first determined whether VPm responses
(and thus their receptive field properties) adapt to sensory prop-
erties of the ramp. As VPm units show strong directional selec-
tivity (Fig. 3A; Petersen et al., 2008), VPm unit receptive fields
should be sensitive to the direction of the ramp stimulus. We
therefore introduced a reversal of ramp direction in the middle of
the session (after 50, 75, or 100 trials depending on the total
number of session trials). In approximately half of the sessions we
switched from caudal to rostral stimulus direction, in the remain-
ing ones the sequence was reverse. As expected from their direc-
tional preference, units often showed differences in responding
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to different ramp deflection directions (Fig. 3A exemplifies this
using an SU), but the rat’s detection performance was not af-
fected at all by this manipulation (compare Fig. 2A). To deter-
mine whether the change in ramp direction impacted the coding
properties across units, the temporal response properties were
quantified from responses to the white noise stimulus within a 2 s
period preceding the ramp presentation. In a first step, spike-
triggered stimulus ensembles were constructed (as done before
with primary afferent spike trains; Chagas et al., 2013). Exem-
plary data obtained from a single-unit spike train are shown in
Figure 3B. The stimulus ensembles were instantaneous (i.e., mea-
sured at one single point in time), and were obtained at the time
preceding the spike that maximized stimulus information con-
tained in the spike train (Eq. 9). In the 2D projections of the 3D
distribution of stimulus properties [position, velocity and accel-
eration � (pos, vel, acc)], the VPm single units showed single
preferred stimuli and conveyed up to 3.7 bits/s (note that the total
stimulus information conveyed by a VPm neuron is likely much
higher if information within an interval is taken into account; cf.
Chagas et al., 2013). We constructed the centroid of the preferred
instantaneous stimulus separately in the first and second halves of
the session. From the vectors pointing in three dimensions to the
centroids of the two halves, we calculated the difference vector
(plotted in Fig. 3C). We found that preferred stimuli did change
systematically in the two halves of the session, but not with re-
spect to the ramp direction. Contrary to the expectation of oppo-
site changes (due to opposite ramp directions), we found that in
all sessions the receptive fields changed on average in almost
identical ways; toward slower stimulus velocities and caudal po-
sitions (Fig. 3C). This result held regardless of whether rostral or
caudal ramps were presented in the first half, suggesting that it is
not a stimulus driven change. All of the observed differences were
smaller than 5% of 2 SD of the kinematic range covered by the
noise stimulus. However, changes were highly significant, as re-
flected by a small reduction of the mean vectors (connecting the
centroids to the origin) and a slight but robust decrement of
stimulus information transmitted by the spike train (Fig. 3D;
length of sum vector in arbitrary units: n � 50; first half: median:
1.8, IQR: 3.6; second half: median 0.9, IQR 2.9; sign rank test, p �
1e�05; Fig. 3E; information rate in bits/s: n � 50; first half: mean:
2.29, SD: 0.43; second half: mean 2.24, SD: 0.47; sign rank test,
p � 0.006). In summary, we found changes in coding across
sessions that were not systematically related to the sensory
context (i.e., ramp direction).

In view of the small effect size and sensory context inde-
pendent nature of the changes in neuronal coding, we were
concerned that the effect could be due to run-down of the neu-
ronal responses (e.g., systematic deterioration of spike quality
during the recording). To address this possibility, we first tested
stability of spike waveforms and spike counts recorded in the two
halves. Spike waveforms were sampled as 23 voltage readings.
Interpreting these as dots in a 23-dimensional space we calculated
the Mahalanobis distance between the clouds made up by spikes
in the first versus second half of the session. This distance is
related to the effect size d� but takes the correlations of the sample
into account, i.e., it uses ellipsoids instead of spheroids to scale
the distance of a point to the cloud’s center of mass. The Ma-
halanobis distance was close to zero in the total sample of 50 units
(n � 42 MU, 8 SU; median 0.08, IQR 0.14). We therefore con-
clude that spike waveforms were stable across the two halves of
the behavioral sessions. Also, spike counts were in the same range
in the two halves (50 trials each) giving no reason to suspect
recording instability. However, counts were slightly but consis-

tently higher in the second half (number of spikes first half: me-
dian: 5181, IQR: 3340; second half: median 5517, IQR 3658; sign
rank test, p � 4e�04).

In summary, we found in this section that neuronal coding
changed to a small degree and the spike rate evoked by the back-
ground white noise stimulus increased during the behavioral ses-
sion. We excluded the possibility that these systematic changes
were due to sensory context, as a reversal of the ramp stimulus,
the perceptual target for the rats, had no effect. Further, our
analyses render it unlikely that recording instability can be made
responsible for the systematic changes found. In the next sec-
tions, we provide evidence that nonsensory variables are predic-
tive for these changes in VPm firing.

VPm neurons reflect state-dependency
To explore whether firing rates differ with respect to the behav-
ioral choice of the animal, we computed the population spike rate
of all hit trials versus all miss trials observed in all units (n � 50;
Fig. 4A). Parsing the trial classes revealed clearly distinguishable
spike rates, even before the ramp onset. The noise-driven re-
sponse in the 2 s pre-ramp interval was higher for upcoming m
trials compared with upcoming h trials. Interestingly, the ramp-
evoked responses showed the opposite, and were higher for trials
that resulted in hits compared with misses (inset). These results
were stable across session time, despite increasing satiation and
differing ratio of hit versus miss trials (first half: 764 m, 2034 h;
second half: 1636 m, 923 h; n � 50 units; Fig. 4A). The effect was
robust even during phases of impulsive nonrewarded licking be-
tween trials in early epochs of the session versus reduced licking
in later phases of the session. Figure 4B shows the effect size
(AUC) of difference of firing rate giving rise to h or m outcome
during the ramp-evoked peak of excitation. The effect across all
units was small but highly significant. The median of boot-
strapped AUC was �0.5 (random performance) before, and

0.5 in an interval 5–10 ms after ramp onset with the 95% pre-
diction interval (calculated in a 5 ms running window) excluding
0.5 in both cases (Fig. 4B, right). The population of eight single
units in the sample showed the same tendency albeit the predic-
tion interval of noise-driven firing rates did not exclude 0.5, pre-
sumably due to the low number of SUs generating very low firing
rates (Fig. 4B, left). To investigate the effect of trial history, we
selected those trial doublets in which an h trial was either fol-
lowed by another h trial or an m trial (hh vs mm; Fig. 4C). The
preceding hit trials by definition were followed by licks, giving
rise to extra spikes due to face movement, and therefore, pre-
cluded analysis of the resulting spike rate. However, after the licks
subsided, the population firing rate quickly separated according
to whether a hit or miss trial was going to ensue. Shortly before
the next stimulus presentation, the average spike rates were well
separated with higher spike rate before miss trials compared with
hit trials. Again, the spike response to the ramp stimulus was
reversed; higher for h trials than for m trials. We then went fur-
ther to inspect differences in spike rate in prestimulus firing rates
of SUs and MUs using spike rates found in the last of a triplet
sequence of h trails (hhh) or m trials (mmm; data not shown).
Mean spike numbers found in the second before the last stimulus
in hhh triplets versus mmm triplets were 17.2 versus 19.2 spikes in
SUs (n � 8) and 44.5 versus 57.8 spikes in MUs (n � 42). Con-
sidering the total sample of units (n � 50), the AUC effect size of
this difference was consistently above random performance in
the pre-ramp interval and below random performance after
ramp onset (as indicated by the exclusion of 0.5 from the 95%
prediction interval). These initial insights suggested that the
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slight differences in spike rate of the first versus second halves of
the session reported in the last section (Fig. 3) were likely due to a
specific enhancement of spikes before miss trials, which were
more abundant in the second half of the sessions.

To describe the relationship of spiking on trial history and
satiation in a more systematic way, we selected trials according to
trial history obtained from one (single), two (doublet), or three
recent trials (triplets). Further we arbitrarily classified satiation
into bins of 0.1 (the range of satiation is 0 to 1). We show popu-
lation noise-driven firing rates (obtained in a 2 s interval before
ramp onset; Fig. 5A,B) as well as ramp-driven rates (obtained in
a window 5– 6 ms after ramp onset, Fig. 5C,D). The pairwise AUC
effect sizes (comparing firing after m/h, mm/hh, and mmm/hhh
trial sequences; Fig. 5A,C), and all satiation levels compared with
lowest satiation at the beginning of the session (
0.1; Fig. 5B,D)
were calculated as well. It can be appreciated that firing rate be-
fore and after the ramp is related to trial history. Further, the
impact of trial history seems to reach back into the past further
than the most recent trial: the AUC effect size of m/h, mm/hh, and
mmm/hhh comparisons is increasing for noise-driven activity
(0.59, 0.61, 0.63) and decreasing for ramp-evoked activity (0.45,
0.43, 0.42). The results so far are consistent with the view that

recent task engagement is associated with an increase in the ratio
of ramp-evoked spiking to noise-evoked spiking, possibly im-
proving the rats’ stimulus detection, while disengagement leads
to the opposite. These variations are local and involve about three
trials, with the most recent trial imparting the strongest effect and
the most remote trial imparting the weakest effect. In contrast,
satiation seems to correlate with noise, as well as ramp-driven
activity, if at all, only in a weak and inconsistent fashion (Fig.
5B,D).

To substantiate and further quantify these results, we next
tested whether a series of two coupled GLMs was able to predict
the animal’s decisions via the VPm spike responses. Figure 6A
plots the behavioral performance registered with each of the 50
spike trains, and the respective noise-driven spike counts (in a 2 s
interval before the respective trial; there are duplicates of behav-
ioral performance among the 50 sessions as sometimes more than
one unit was recorded within the same session). Figure 6B depicts
the observed spike counts. To be able to study the effect of the
same independent variables as done for the direct behavioral
modeling, the first GLM used the identical linear regression
model (Eq. 1) to map the three variables bias, satiation and trial
history onto spike counts. To match the assumed Poisson distri-

Figure 4. Spike responses depend on decisions and rewards. A, Noise-driven and ramp-evoked smoothed spike rates in the first and second half of the session (total sample, 50 units; first half:
764 m trials; 2034 h trials; second half: 1636 m trials; 923 h trials). Inset, A blow up of the ramp-evoked activity (length 100 ms). B, Effect size (AUC) of the same data as shown in A, but incorporating
data observed in the total sessions, and focusing on ramps. Gray lines depict the mean stimulus for each half of the session (in which noise is canceled out). AUC is calculated from spike count
distributions observed in 5 ms moving windows. No effect is AUC � 0.5 (broken line). Median is shown in blue, the 95 prediction interval (2.5 and 97.5 percentiles) are shown in gray. C, Licking PSTH
on top shows the times of consummatory licks after h trials. Spike population firing rate for h and m trials that were preceded by an h trial (sequence hh, hm; n � 2453, 763; all MU units n � 42).
The time axis is interrupted to allow averaging the first and last parts of the intertrial interval despite different total durations. Dashed lines indicate ramp onset.
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bution of spike counts, an exponential was used as the nonlinear
response function (Eq. 3). A second GLM then used the spike
count prediction of the first as input (weight bSPK, together with a
bias term b0,SPK) to map them onto the rats’ decisions (Fig. 6C).
Fitting the full model and its nested versions, we found that the
full model best explained pre-ramp spiking (deviances: DSPK �
1165; DDec � 144) closely followed by the reduced model lacking
satiation (with the first GLM attaining slightly higher and the
second attaining lower deviance: DSPK,full � 1192; DSPK,red1 �
1165; DDec,full � 144; DDec,red1 � 165), indicating that the satia-
tion term did not consistently contribute to the models’ pre-
diction performance. Finally, abolishing the trial history term
reduced the models’ performance consistently and significantly
(DSPK,red2 � 1319; DDec,red2 � 196; both significant different form
the full and the first reduced model, p 
 0.01, deviance test). The

results of the model predictions for each trial in the sample are
shown in Figure 6D and should be compared with the animals’
actual performance in Figure 6A. Qualitatively, the full model
shows only a modest improvement over the bias and trial history
model, suggesting that the fine grained changes in responding are
conveyed largely by the inclusion of the trial history term in the
regression model rather than the satiation term. Finally, we pre-
dicted the changeover rate based on the rat behavioral data (Fig.
6E). Although changeover prediction grossly failed with the bias-
only model (data not shown), adding the trial history term ap-
proximates the animals’ changeover rate (38 of 50 prediction
interval estimated from 1000 model runs included the animals’
changeover rate), although there was a tendency of overestima-
tion in sessions with low changeover rates. The prediction of
changeover rate did not improve by adding satiation to the re-

Figure 5. Trial history and satiation-dependent VPm responses. Population data from 50 units. A, Noise-evoked firing rate distributions (left) and respective median AUC obtained in a 2 s interval
before ramp onset. AUC is always tested pairwise against the trial history class holding exclusively h trials. Trivially therefore, that class holds the value 0.5. B, Same as A but for satiation. AUC here
is tested pairwise against the satiation bin 0 – 0.1 (which then trivially holds the value of 0.5). C, D, Same as A and B but for ramp-evoked spike rates (4 – 6 ms after ramp onset). Conventions for all
panels: Box-and-whisker plots show median, IQR, 2.5 and 97.5 percentiles. Number of trials: trial history classes: m: 3434; h: 2907; mm: 2498; hm: 966; mh: 945; hh: 2891; mmm: 2053; hmm: 484;
mhm: 372; hhm: 584; mmh: 454; hmh: 482; mhh: 568; hhh: 2303. Number of trials in satiation bins: 0 – 0.1: 608; 0.1– 0.2: 516; 0.2– 0.3: 558; 0.3– 0.4: 494; 0.4 – 0.5: 497; 0.5– 0.6: 509; 0.6 – 0.7:
703; 0.7– 0.8: 777; 0.8 – 0.9: 725; 0.9 –1.0: 1913.
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gression equation. If at all, the addition of this term deteriorated
the model performance somewhat (29 of 50 prediction intervals
included the experimental value). As before for the direct behav-
ioral model the gradient of performances of the indirect model is
captured by the median accuracy (Eq. 6) of prediction [bias: me-
dian accuracy � 0.52 (the 95% prediction interval straddled ran-
dom accuracy of 0.5 in 40 of 50 sessions): bias and trial history:
median accuracy � 0.66 (11 of 50 prediction intervals straddled
random performance); full: median accuracy � 0.65 (13 of 50
prediction intervals straddled random performance)].

The similarity of model performance to predict the choices of
the rats based directly on the behavioral data (Fig. 2) and indi-
rectly via VPm spike counts (Fig. 6) indicated that spike counts
carry some information about trial history as well as the upcom-
ing decision. To show this more directly, we correlated pre-ramp
noise-driven spike counts first with current trial history, second
with upcoming decisions and thirdly with the predictor for deci-
sions from the behavioral model. The resulting correlations were

scattered widely but assumed predominantly the negative range
of correlation coefficients (i.e., low firing predicting high proba-
bility of a Go decision; Fig. 6F). The best units reached coeffi-
cients lower than r � �0.5. To form an intuition what these
differences mean in terms of number spikes, we plot these corre-
lation coefficients against the difference of spike counts they
would predict for the extremes of trial history (mmm vs hhh).

In a final analysis, we sought to determine whether informa-
tion about trial history is contained exclusively in spike counts or
whether it could also be transferred by spike patterns. This is an
important question as thalamus regular versus burst spike pat-
terns are known to have a unique basis in special membrane
properties and have long been considered as decisive variables of
thalamic functionality (Jahnsen and Llinás, 1984). We first calcu-
lated the Fano factor, which is a measure of variability of spike
count (Eq. 7). This measure clearly contained information about
upcoming miss and hit trials and orders the binary value of dou-
blet and triplet trial history sequences fairly well (Fig. 7A). The

Figure 6. Indirect behavioral modeling based on VPm spikes. A, Rats’ choices (black, h; white, m). Same data as Figure 2A, but shown for the 50 sessions, in which each unit was recorded. Some
sessions duplicate here because more than one unit was recorded in it. The sessions are ordered according to number of changeovers. B, Noise-driven spike counts (in a 2 s interval preceding ramp
onset) are plotted using a gray scale that maps minimum to maximum counts for each unit to black and white. C, Schematic illustration of the behavioral model consisting of two coupled GLMs; the
first predicting spikes, the second predicting decisions. The regression model of the first is identical with the model shown in Figure 2, but the assumed Poisson distribution of spike counts are
reflected by the use of an exponential response function. The second model uses the output of the first (weighted by bSPK), a bias term (b0,SPK), and a logistic response function, which outputs the
probability of a Go decision (�Go). The generative part is the same as shown in Figure 2B. D, Model prediction. Three nested models are shown. The full model (left) incorporates bias, satiation and
trial history terms for the first GLM (Eq. 1), a first reduced model lacks satiation (middle), and a further reduced model contains exclusively the bias term (right). The gray values indicate �Go (range:
0/white to 1/black). The first GLM’s deviance for the three models is shown on the right. The model reduced to the bias term is not well able to predict decisions, whereas the second reduced one
(center, including the trail history term) is close to the full model. Nevertheless, all pairwise deviances are significantly different ( p 
 0.01, deviance test; Eq. 5). E, The full (left) and the first reduced
model (right) were used to predict changeover rates by generating decisions. Rat data (green) and model predictions are shown (red, 95% prediction intervals). The performance of the full model
is not better than the reduced one. F, Correlation coefficients (abscissa) obtained with each unit (n � 50) for spike counts versus (1) current decision (green), (2) trial history (red), and (3) model
predictors (output of the first GLM; blue). Note that these correlations are similar and biased toward negative coefficients (i.e., higher spike counts before m trials). The coefficients are plotted against
the difference of average counts in mmm versus hhh trials.
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ordering is such that miss trials or sequences containing more (or
more recent) miss trials tend to assume a higher Fano factor, i.e.,
more irregular spike counts. Another measure, better focused on
spike timing, is the coefficient of variation (CV) of spike intervals
(Eq. 8). Like the Fano factor, the CV of spike intervals indicated
more irregular firing with sequences containing more (or more
recent) miss trials (Fig. 7B). Finally, the time scale of spike pat-
terning was captured by autocorrelograms (ACs) of MU spike
trains obtained from the different trial classes. The mean ACs
showed a peak of correlation at small time intervals 
5 ms, a
possible sign of bursting within the population of neurons. Im-
portantly, the amplitude of the peak systematically varied with
trial history in line with Fano factor and CV: the most patterning
on this precise time scale was seen with trials containing most (or
most recent) miss trials (Fig. 7C). In summary, information
about trial history is contained in VPm neuron prestimulus spik-
ing as well as spiking irregularity.

Discussion
In this study we have revealed two task-dependent, nonsensory
variables, which partly predict the choice behavior of rats trained
on a tactile detection task. We provide evidence that one of them,
a local variable that reports the last few choices and rewards, is
also represented in the spike rate and patterns of rat whisker
thalamus (VPm). Specifically, our study has the following novel
aspects. First, we show that VPm neurons, an early tactile neuro-

nal structure of the thalamus on the ascending tactile pathway,
can reflect cognitive signals. Second, we show that this effect is
related to behavioral outcomes of previous trials. Third, the re-
flection of local trial history in VPm spiking is largely limited to
two to three trials in the past.

Functional aspects of the found modulation
Our focus on task-dependent variables ignores all task indepen-
dent variables needed to explain the total variance of choice
behavior and VPm spiking. This reduction is shared with many
studies that have studied effects on either behavioral (Corrado et
al., 2005; Busse et al., 2011; Stüttgen et al., 2013) or neurophysi-
ological variables (Britten et al., 1996; Sugrue et al., 2004; Nien-
borg and Cumming, 2009; Yang et al., 2016). In the visual and
tactile system of monkeys, it is generally assumed that choice
probability is high in higher cortical areas and declines in early
sensory ones (Britten et al., 1996; de Lafuente and Romo, 2005;
Nienborg and Cumming, 2006). Nevertheless, some choice re-
lated activity has been reported as early as the first-order thala-
mus (Jiang et al., 2015; Yang et al., 2016). The mentioned studies
generally argued that choice-related spiking can be readily
explained by bottom-up conveyance of random activity fluctua-
tions in the sensory pathway, which then impact perceptual
circuits; a purely “sensory” interpretation of the observed rela-
tion (Britten et al., 1996). Nienborg and Cumming (2009) have
exploited white noise analysis to reveal that choice-signaling in

Figure 7. Prestimulus spike patterns are sensitive to trial history. A, Fano factor of spike counts in the time interval two seconds before stimulus onset. B, Coefficient of variation of spike intervals.
C, Mean autocorrelograms (n � 42 MU spike trains). Rows plot single trials, doublet and triplet spike history. Plots in the same column use the same axis scale and unit. Colors as in Figure 5.
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monkey V2 area builds up over hundreds of milliseconds after
onset of stimulus presentation, a finding incompatible with
bottom-up signaling. We extend their finding by demonstrating,
first, that the found influences are related to past decision/out-
comes, and second, are reflected by VPm noise-driven spiking in
the interstimulus interval, long before the upcoming stimulus is
presented and a choice is executed. Therefore, the found effects
are related mainly to behavioral context and corresponding brain
states, and therefore must have been caused by central signals.
Bottom-up fluctuations are not excluded by our results, but their
effect naturally must be limited to the poststimulus period.

The mentioned reports, studying choice-related signals based
on the choice in just a single trial, all found very small but signif-
icant choice probabilities. Interestingly, we found that effect sizes
for pre stimulus spiking in VPm were seen to increase from just
�0.5 to close to 0.7, when considering past choices and outcomes
(Fig. 5, compare A, C). We conclude that even very small effect
sizes, obtained with classical single trial approaches, can gain con-
siderable strength if appropriate behavioral context is taken into
account (in our case local trial history, the preceding 3 trials). One
study in the mouse tactile system, directly related to the present
work, investigated choice related signals at the level of VPm in the
context of a detection task (Yang et al., 2016). This study found a
nonrandom choice probability in activity evoked by the target
stimulus, which we confirm here. An important difference was,
however, that the previous study did not find any influence of
choice on the “spontaneous” (nonstimulated) firing between
stimuli. To explain this apparent difference, we hold that consid-
eration of trial history and intertrial white noise stimulation were
the two decisive experimental factors that enabled us to extend
the previous results by exposing modulation of spike rates and
patterns that anticipated upcoming choices. It is noteworthy that
modulation of spike rate in the prestimulus period relating to
upcoming hit trials was opposite to that after stimulus onset (the
first negative, the second positive). It is thus a suggestive propo-
sition that increment in spike rate contrast between background
and target stimulus in VPm units are at the basis of improved
detection.

The nature of modulatory effects
We first delineate the found effects from motor-related signals on
the ascending tactile pathway. We and others have shown repeat-
edly that a passive psychophysical task in well habituated and
overtrained head-fixed rats largely abolishes whisking. To have
head-fixed animals generate whisker movements they need to be
explicitly rewarded for movements (Bermejo et al., 1996, 1998;
Stüttgen et al., 2006; Schwarz et al., 2010; Ollerenshaw et al., 2012).
Moreover, our experimental condition, with the whisker inserted
into a narrow tube, would translate whisking to forces of the
inserted whisker against the tube, and thus, to elevated spiking in
concert with the whisking rhythm (�10 Hz; Urbain et al., 2015;
adding to internally generated rhythmic whisking-related signals,
Moore et al., 2015). Sensory gating, the well described suppressive
effect of movement on ascending sensory signals (Chapman, 1994;
Hentschke et al., 2006) would surely be overwritten by these forces
acting directly on the mechanically clamped whisker. We therefore,
calculated ACs of spike trains and scrutinized them for signs of
the �10 Hz whisker rhythm. Applying rigorous criteria, we re-
moved all trials from the data, in which rhythmic influence of
spiking by whisking was suspected. Further, modulation possibly
linked to licking movements were excluded by conditioning
stimulus presentation to the absence of licking 2 s before stimulus
presentations.

Our study is a first step to characterize the effect of behavioral
disposition on upcoming choices and spiking in the ascending
tactile pathway. The most direct evidence obtained in our study is
in favor of memory content about past trial decisions and out-
comes. We found that triplets of trials gain access to future choice
behavior and VPm spiking in a highly structured way, such that
the most proximate trial attains the largest weight on upcoming
decisions and spiking, with the second last one exerting a lower
effect, and the third last one being close to ineffective. Intertrial
dependencies are regularly observed in behavioral paradigms, in
which agents are required to keep past experiences in memory
and adaptively extract behavioral strategies from them (Corrado
et al., 2005; Lau and Glimcher, 2005; Stüttgen et al., 2013). How-
ever, it is a remarkable and well corroborated fact in animals and
humans that intertrial dependencies are regularly observed also
with fixed stimulus–reward properties/contingencies (Nienborg
and Cumming, 2009; Busse et al., 2011; Fründ et al., 2014). It
appears therefore, that intertrial correlations may be generated
internally in a quasi-automated fashion, even in cases where the
trial history is behaviorally irrelevant. Our behavioral and physiolog-
ical data clearly confirm this notion. Such intertrial dependencies
may be related to attentional processes, for which facilitated thalamic
spike responses (McAlonan et al., 2008) or BOLD responses
(O’Connor et al., 2002; Saalmann and Kastner, 2011; Ling et al.,
2015) were reported.

On the behavioral level, our data also point to a role for sati-
ation, a more global influence on choice behavior compared with
trial history. In contrast, satiation, when combined with bias and
trial history as a regressor in the indirect model predicting behav-
ior from spikes, did neither consistently improve the model fit
nor did it predict changeover rates better. From the relative lack
of influence of the global variable on thalamic processing, we
suggest that signals mediating satiation and similar variables ac-
cess executive functions downstream from VPm. This conclusion
is in agreement with the idea that ingestion is controlled by a
neuronal network that involves hypothalamus, basal ganglia and
prefrontal cortex, and receives tactile inputs from the brainstem/
spinal cord level (Risold et al., 1997).

Possible anatomical bases
Working memory, holding the short term decision memory as
found here, likely originates in association areas in prefrontal or
parietal cortex (de Lafuente and Romo, 2005; Gold and Shadlen,
2007; Fuster, 2009). The primary sensory thalamus may be ac-
cessed for this kind of signal by top-down chains of corticocorti-
cal and corticothalamic projections (Crandall and Keller, 1985;
Ghazanfar et al., 2001; Temereanca and Simons, 2004; Casa-
grande et al., 2005; Gilbert and Sigman, 2007; Briggs and Usrey,
2008; Buffalo et al., 2010; Mease et al., 2014). Although well
described projections of prefrontal areas to neuromodulatory
centers in the brainstem, which in turn terminate on neurons of
ascending sensory pathways, may play a role as well (Moruzzi and
Magoun, 1949; Steriade and McCarley, 1990; McCormick and
Bal, 1997). Crick (1984) proposed that the corticothalamic feed-
back system may help to functionally couple neurons within and
across ascending projection systems, and thus act as the “search-
light of attention”. For this to happen, the integrative power of
the corticothalamic system should clearly surpass the borders of
unisensory integration. Recent evidence of nonsensory and mul-
tisensory signaling of primary sensory cortex is supporting such a
role (Lau and Glimcher, 2005; Busse et al., 2011; Halassa et al.,
2014), and the nonsensory thalamic signals revealed here would
be a required element in this scheme.
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Casagrande VA, Sáry G, Royal D, Ruiz O (2005) On the impact of attention
and motor planning on the lateral geniculate nucleus. Prog Brain Res
149:11–29. CrossRef Medline
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(2013) Suboptimal criterion setting in a perceptual choice task with
asymmetric reinforcement. Behav Processes 96:59 –70. CrossRef Medline

Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the
representation of value in the parietal cortex. Science 304:1782–1787.
CrossRef Medline

Sugrue LP, Corrado GS, Newsome WT (2005) Choosing the greater of two
goods: neuronal currencies for valuation and decision making. Nat Rev
Neurosci 6:363–375. CrossRef Medline

Temereanca S, Simons DJ (2004) Functional topography of corticothalamic
feedback enhances thalamic spatial response tuning in the somatosensory
whisker/barrel system. Neuron 41:639 – 651. CrossRef Medline

Urbain N, Salin PA, Libourel PA, Comte JC, Gentet LJ, Petersen CCH (2015)
Whisking-related changes in neuronal firing and membrane potential
dynamics in the somatosensory thalamus of awake mice. Cell Rep 13:647–
656. CrossRef Medline

Van der Werf YD, Witter MP, Uylings HB, Jolles J (2000) Neuropsychology

of infarctions in the thalamus: a review. Neuropsychologia 38:613– 627.
CrossRef Medline

Waiblinger C, Brugger D, Schwarz C (2015a) Vibrotactile discrimination in
the rat whisker system is based on neuronal coding of instantaneous
kinematic cues. Cereb Cortex 25:1093–1106. CrossRef Medline

Waiblinger C, Brugger D, Whitmire CJ, Stanley GB, Schwarz C (2015b)
Support for the slip hypothesis from whisker-related tactile perception of
rats in a noisy environment. Front Integr Neurosci 9:53. CrossRef Medline

Whitmire CJ, Waiblinger C, Schwarz C, Stanley GB (2016) Information
coding through adaptive gating of article information coding through
adaptive gating of synchronized thalamic bursting. Cell Rep 14:795– 807.
CrossRef Medline

Wichmann FA, Hill NJ (2001a) The psychometric function: I. fitting, sam-
pling, and goodness of fit. Percept Psychophys 63:1293–1313. CrossRef
Medline

Wichmann FA, Hill NJ (2001b) The psychometric function: II. Bootstrap-
based confidence intervals and sampling. Percept Psychophys 63:1314 –
1329. CrossRef Medline

Wolfe J, Hill DN, Pahlavan S, Drew PJ, Kleinfeld D, Feldman DE (2008)
Texture coding in the rat whisker system: slip-stick versus differential
resonance. PLoS Biol 6:e215. CrossRef Medline

Yang H, Kwon SE, Severson KS, O’Connor DH (2016) Origins of choice-
related activity in mouse somatosensory cortex. Nat Neurosci 19:127–
134. CrossRef Medline

Waiblinger et al. • Cognitive Signals in VPm J. Neurosci., May 23, 2018 • 38(21):4870 – 4885 • 4885

http://dx.doi.org/10.1152/physrev.1988.68.3.649
http://www.ncbi.nlm.nih.gov/pubmed/2839857
http://dx.doi.org/10.1523/JNEUROSCI.1864-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16870738
http://dx.doi.org/10.1016/j.beproc.2013.02.014
http://www.ncbi.nlm.nih.gov/pubmed/23466903
http://dx.doi.org/10.1126/science.1094765
http://www.ncbi.nlm.nih.gov/pubmed/15205529
http://dx.doi.org/10.1038/nrn1666
http://www.ncbi.nlm.nih.gov/pubmed/15832198
http://dx.doi.org/10.1016/S0896-6273(04)00046-7
http://www.ncbi.nlm.nih.gov/pubmed/14980211
http://dx.doi.org/10.1016/j.celrep.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26489463
http://dx.doi.org/10.1016/S0028-3932(99)00104-9
http://www.ncbi.nlm.nih.gov/pubmed/10689038
http://dx.doi.org/10.1093/cercor/bht305
http://www.ncbi.nlm.nih.gov/pubmed/24169940
http://dx.doi.org/10.3389/fnint.2015.00053
http://www.ncbi.nlm.nih.gov/pubmed/26528148
http://dx.doi.org/10.1016/j.celrep.2015.12.068
http://www.ncbi.nlm.nih.gov/pubmed/26776512
http://dx.doi.org/10.3758/BF03194544
http://www.ncbi.nlm.nih.gov/pubmed/11800458
http://dx.doi.org/10.3758/BF03194545
http://www.ncbi.nlm.nih.gov/pubmed/11800459
http://dx.doi.org/10.1371/journal.pbio.0060215
http://www.ncbi.nlm.nih.gov/pubmed/18752354
http://dx.doi.org/10.1038/nn.4183
http://www.ncbi.nlm.nih.gov/pubmed/26642088

	Primary Tactile Thalamus Spiking Reflects Cognitive Signals
	Introduction
	Materials and Methods
	Results
	Discussion
	References


